Back to Search
Start Over
Factors Controlling Metal-Ion Selectivity in the Binding Sites of Calcium-Binding Proteins. The Metal-Binding Properties of Amide Donors. A Crystallographic and Thermodynamic Study
- Source :
- Inorganic Chemistry. 44:8495-8502
- Publication Year :
- 2005
- Publisher :
- American Chemical Society (ACS), 2005.
-
Abstract
- The metal-ion complexing properties of the ligand EDTAM (ethylenediamine-N,N,N',N'-tetraacetamide) are investigated as a model for the role of amide oxygen donors in the binding sites of Ca-binding proteins. The structures of the complexes [Ca(EDTAM)NO3]NO3 (1), [La(EDTAM)(H2O)4](NO3)3.H2O (2), and [Cd(EDTAM)(NO3)]NO3 (3) are reported: 1 monoclinic, P2(1)/c, a = 10.853(2) angstroms, b = 12.893(3) angstroms, c = 13.407(3) angstroms, beta = 103.28(3) degrees, Z = 4, R = 0.0281; 2 triclinic, P, a = 8.695(2) angstroms, b = 9.960(2) angstroms, c = 16.136(3) angstroms, alpha = 95.57(3) degrees, beta = 94.84(3) degrees, gamma = 98.72(3) degrees, Z = 2, R = 0.0394; 3 monoclinic, P2(1)/c, a = 10.767(2) angstroms, b = 12.952(2) angstroms, c = 13.273(2) angstroms, beta = 103.572(3) degrees, Z = 4, R = 0.0167. Compounds 1 and 3 are isostructural, and the EDTAM binds to the metal ion through its two N-donors and four O-donors from the amide groups. Ca(II) in 1 is 8-coordinate with a chelating NO3- group, while Cd(II) in 3 may possibly be 7-coordinate, with an asymmetrically coordinated NO3- that is best regarded as unidentate. The La(III) in 2 is coordinated to the EDTAM in a manner similar to that of 1 and 3, but it is 10-coordinate with four water molecules coordinated to the La(III). The formation constants (log K1) for complexes of a variety of metal ions with EDTAM are reported in 0.1 M NaNO3 at 25.0 +/- 0.1 degrees C. These are compared to the log K1 values for en (ethylenediamine) and THPED (N,N,N',N'-tetrakis(2-hydroxypropyl)-ethylenediamine). For large metal ions, such as Ca2+ or La3+, log K1 increases strongly when the four acetamide groups are added to en to give EDTAM, whereas for a small metal ion, such as Mg2+, this increase is small. The log K1 values for EDTAM compared to THPED suggest that the amide oxygen is a much stronger base than the alcoholic oxygen. Structures of binding sites in 40 Ca-binding proteins are examined. It is shown that the Ca-O=C bond angles involving coordinated amides in these sites are large, commonly being in the 150-180 degrees range. This is discussed in terms of the idea that for purely ionic bonding the M-O=C bond angle will approach 180 degrees, while for covalent bonding the angle should be closer to 120 degrees. How this fact might be used by the proteins to control selectivity for different metal ions is discussed.
- Subjects :
- Models, Molecular
Binding Sites
Denticity
Stereochemistry
Calcium-Binding Proteins
Triclinic crystal system
Crystallography, X-Ray
Ethylenediamines
Ligand (biochemistry)
Amides
Substrate Specificity
Inorganic Chemistry
Metal
Crystallography
chemistry.chemical_compound
chemistry
visual_art
Amide
visual_art.visual_art_medium
Thermodynamics
Calcium
Chelation
Physical and Theoretical Chemistry
Isostructural
Monoclinic crystal system
Subjects
Details
- ISSN :
- 1520510X and 00201669
- Volume :
- 44
- Database :
- OpenAIRE
- Journal :
- Inorganic Chemistry
- Accession number :
- edsair.doi.dedup.....cd8192cdec392d0630ab057423b5be30
- Full Text :
- https://doi.org/10.1021/ic050632s