Back to Search Start Over

An Encryption Scheme Using Chaotic Map and Genetic Operations for Wireless Sensor Networks

Authors :
Vallipuram Muthukkumarasamy
Kamanashis Biswas
Kalvinder Singh
Source :
IEEE Sensors Journal. 15:2801-2809
Publication Year :
2015
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2015.

Abstract

Over the past decade, the application domain of wireless sensor networks has expanded steadily, ranging from environmental management to industry control, and from structural health monitoring to strategic surveillance. With the proliferation of sensor networks at home, work place, and beyond, securing data in the network has become a challenge. A number of security mechanisms have been proposed for sensor networks to provide data confidentiality: 1) advanced encryption system; 2) KATAN; 3) LED; and 4) TWINE. However, these schemes have drawbacks, including security vulnerabilities, need for hardware-based implementation, and higher computational complexity. To address these limitations, we propose a lightweight block cipher based on chaotic map and genetic operations. The proposed cryptographic scheme employs elliptic curve points to verify the communicating nodes and as one of the chaotic map parameters to generate the pseudorandom bit sequence. This sequence is used in XOR, mutation, and crossover operations in order to encrypt the data blocks. The experimental results based on Mica2 sensor mote show that the proposed encryption scheme is nine times faster than the LED protocol and two times faster than the TWINE protocol. We have also performed a number of statistical tests and cryptanalytic attacks to evaluate the security strength of the algorithm and found the cipher provably secure.

Details

ISSN :
23799153 and 1530437X
Volume :
15
Database :
OpenAIRE
Journal :
IEEE Sensors Journal
Accession number :
edsair.doi.dedup.....cd8a659949f7175c1ae07d5986a50d1a
Full Text :
https://doi.org/10.1109/jsen.2014.2380816