Back to Search Start Over

Dual Effect of Tamoxifen on Arterial KCa Channels Does Not Depend on the Presence of the β1 Subunit

Authors :
Guillermo J. Pérez
Source :
Journal of Biological Chemistry. 280:21739-21747
Publication Year :
2005
Publisher :
Elsevier BV, 2005.

Abstract

Tamoxifen has been reported to directly activate large conductance calcium-activated potassium (KCa) channels through the KCa beta1 subunit, suggesting a cardio-protective role of this compound. The present study using knock-out (KO) mice for the KCa channel beta1 subunit was aimed at understanding the molecular mechanisms of the effects of tamoxifen on arterial smooth muscle KCa channels. Single channel studies were conducted in excised patches from cerebral artery myocytes from both wild-type and KO animals. The present data demonstrated that tamoxifen can inhibit arterial KCa channels due to a major decrease in channel open probability (P(o)), a mechanism different from the reduction in single channel amplitude reported previously and also observed in the present work. A tamoxifen-induced decrease in P(o) was present in arterial KCa channels from both wild-type and beta1 KO animals. This inhibition was concentration-dependent and partially reversible with a half-maximal concentration constant IC(50) of 2.6 microm. The effect of tamoxifen was actually dual Single channel kinetic analysis showed that tamoxifen shortens both mean closed time and mean open time; the latter is probably due to an intermediate duration voltage-independent blocking mechanism. Thus, tamoxifen block would predominate when KCa channel P(o) is0.1-0.2, limiting the maximum P(o), whereas a leftward shift in voltage or Ca(2+) activation curves can be observed for P(o) values lower than those values. This dual effect of tamoxifen appears to be independent of the beta1 subunit. The molecular specificity of tamoxifen, or eventually other xenoestrogen derivatives, for the KCa channel beta1 subunit is uncertain.

Details

ISSN :
00219258
Volume :
280
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....cd8db4750d5c6e33cf579bc618c59799
Full Text :
https://doi.org/10.1074/jbc.m413953200