Back to Search Start Over

Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model

Authors :
Nicolas Vauchelet
Michel Duprez
Yannick Privat
Pierre-Alexandre Bliman
Modelling and Analysis for Medical and Biological Applications (MAMBA)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Computational Anatomy and Simulation for Medicine (MIMESIS)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube)
École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche Mathématique Avancée (IRMA)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Source :
Journal of Optimization Theory and Applications, Journal of Optimization Theory and Applications, 2021, 189 (2), pp.408--436. ⟨10.1007/s10957-021-01830-1⟩, Journal of Optimization Theory and Applications, Springer Verlag, 2021, 189 (2), pp.408--436. ⟨10.1007/s10957-021-01830-1⟩
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

International audience; The aim of this article is to understand how to apply partial or total containment to SIR epidemic model during a given finite time interval in order to minimize the epidemic final size, that is the cumulative number of cases infected during the complete course of an epidemic. The existence and uniqueness of an optimal strategy is proved for this infinite-horizon problem and a full characterization of the solution is provided. The best policy consists in applying the maximal allowed social distancing effort until the end of the interval, starting at a date that is not always the closest date and may be found by a simple algorithm. Both theoretical results and numerical simulations demonstrate that it leads to a significant decrease of the epidemic final size. We show that in any case the optimal intervention has to begin before the number of susceptible cases has crossed the herd immunity level, and that its limit is always smaller than this threshold. This problem is also shown to be equivalent to the minimum containment time necessary to stop at a given distance after this threshold value.

Details

ISSN :
15732878 and 00223239
Volume :
189
Database :
OpenAIRE
Journal :
Journal of Optimization Theory and Applications
Accession number :
edsair.doi.dedup.....cdbcb564b77885bc26b209166c9d3ed7
Full Text :
https://doi.org/10.1007/s10957-021-01830-1