Back to Search Start Over

SVM-based tree-type neural networks as a critic in adaptive critic designs for control

Authors :
Alok Kanti Deb
Jayadeva
Suresh Chandra
M. Gopal
Source :
IEEE transactions on neural networks. 18(4)
Publication Year :
2007

Abstract

In this paper, we use the approach of adaptive critic design (ACD) for control, specifically, the action-dependent heuristic dynamic programming (ADHDP) method. A least squares support vector machine (SVM) regressor has been used for generating the control actions, while an SVM-based tree-type neural network (NN) is used as the critic. After a failure occurs, the critic and action are retrained in tandem using the failure data. Failure data is binary classification data, where the number of failure states are very few as compared to the number of no-failure states. The difficulty of conventional multilayer feedforward NNs in learning this type of classification data has been overcome by using the SVM-based tree-type NN, which due to its feature to add neurons to learn misclassified data, has the capability to learn any binary classification data without a priori choice of the number of neurons or the structure of the network. The capability of the trained controller to handle unforeseen situations is demonstrated.

Details

ISSN :
10459227
Volume :
18
Issue :
4
Database :
OpenAIRE
Journal :
IEEE transactions on neural networks
Accession number :
edsair.doi.dedup.....cdf58770907c42d94fde592b95287801