Back to Search Start Over

The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension

Authors :
Mihai Păun
Sébastien Boucksom
Thomas Peternell
Jean-Pierre Demailly
Institut Fourier (IF )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Mathematisches Institut [Bayreuth]
Universität Bayreuth
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche Mathématique Avancée (IRMA)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Algebraic Geometry, Journal of Algebraic Geometry, American Mathematical Society, 2013, 22 (2), pp.201-248. ⟨10.1090/S1056-3911-2012-00574-8⟩, Journal of Algebraic Geometry, 2013, 22 (2), pp.201-248. ⟨10.1090/S1056-3911-2012-00574-8⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

We prove that a holomorphic line bundle on a projective manifold is pseudo-effective if and only if its degree on any member of a covering family of curves is non-negative. This is a consequence of a duality statement between the cone of pseudo-effective divisors and the cone of ``movable curves'', which is obtained from a general theory of movable intersections and approximate Zariski decomposition for closed positive (1,1)-currents. As a corollary, a projective manifold has a pseudo-effective canonical bundle if and only if it is is not uniruled. We also prove that a 4-fold with a canonical bundle which is pseudo-effective and of numerical class zero in restriction to curves of a covering family, has non negative Kodaira dimension.<br />Comment: 39 pages

Details

Language :
English
ISSN :
10563911 and 15347486
Database :
OpenAIRE
Journal :
Journal of Algebraic Geometry, Journal of Algebraic Geometry, American Mathematical Society, 2013, 22 (2), pp.201-248. ⟨10.1090/S1056-3911-2012-00574-8⟩, Journal of Algebraic Geometry, 2013, 22 (2), pp.201-248. ⟨10.1090/S1056-3911-2012-00574-8⟩
Accession number :
edsair.doi.dedup.....ce16d72067e5ec39efe8b7bea49bced8
Full Text :
https://doi.org/10.1090/S1056-3911-2012-00574-8⟩