Back to Search
Start Over
Knockdown of circ_0004104 Alleviates Oxidized Low-Density Lipoprotein-Induced Vascular Endothelial Cell Injury by Regulating miR-100/TNFAIP8 Axis
- Source :
- Journal of cardiovascular pharmacology. 78(2)
- Publication Year :
- 2020
-
Abstract
- Coronary artery disease (CAD) is a common cardiovascular disease, mainly due to vascular endothelial cell (VEC) injury caused by atherosclerosis. Circular RNA has been shown to be involved in the regulation of various diseases. However, the role and mechanism of circ_0004104 in CAD are still unclear. Oxidized low-density lipoprotein (ox-LDL) was used to construct the VEC injury model in vitro. The expression levels of circ_0004104 and miR-100 were measured by quantitative real-time polymerase chain reaction. The proliferation of VECs was determined using 3-(45)-dimethylthiahiazo (-z-y1)-35-di-phenytetrazoliumromide assay and 5-ethynyl-2'-deoxyuridine staining assay. VEC apoptosis rate was assessed using flow cytometry, and caspase-3 activity was measured using a Caspase-3 Assay Kit. The protein expression levels of Ki-67, cleaved-caspase3, and tumor necrosis factor-α-induced protein 8 (TNFAIP8) were detected by western blot analysis. Furthermore, enzyme-linked immunosorbent assay was performed to assess the concentrations of inflammatory cytokines. In addition, the relationship between miR-100 and circ_0004104 or TNFAIP8 was confirmed by dual-luciferase reporter assay and biotin-labeled RNA pull-down assay. Our results revealed that circ_0004104 was upregulated and miR-100 was downregulated in patients with CAD and ox-LDL-induced VECs. Ox-LDL could inhibit the proliferation and promote the apoptosis and inflammation of VECs to induce VEC injury. However, silenced circ_0004104 could alleviate VEC injury induced by ox-LDL. Moreover, we found that circ_0004104 could sponge miR-100 and a miR-100 inhibitor could reverse the inhibition effect of circ_0004104 knockdown on ox-LDL-induced VEC injury. In addition, TNFAIP8 was a target of miR-100, and miR-100 alleviated ox-LDL-induced VEC injury by targeting TNFAIP8. Our data suggested that circ_0004104 promoted ox-LDL-induced VEC injury by the miR-100/TNFAIP8 axis, indicating that circ_0004104 might be a potential biomarker for CAD treatment.
- Subjects :
- Inflammation
Apoptosis
Coronary Artery Disease
Proinflammatory cytokine
Downregulation and upregulation
Western blot
medicine
Humans
Cells, Cultured
Cell Proliferation
Pharmacology
Gene knockdown
medicine.diagnostic_test
Chemistry
Caspase 3
Endothelial Cells
RNA, Circular
Molecular biology
Endothelial stem cell
Lipoproteins, LDL
MicroRNAs
Gene Expression Regulation
Case-Control Studies
Cytokines
Tumor necrosis factor alpha
medicine.symptom
Inflammation Mediators
Cardiology and Cardiovascular Medicine
Apoptosis Regulatory Proteins
Signal Transduction
Subjects
Details
- ISSN :
- 15334023
- Volume :
- 78
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of cardiovascular pharmacology
- Accession number :
- edsair.doi.dedup.....ce244f64bac3552973e928d8021e4906