Back to Search Start Over

Human Norovirus NTPase Antagonizes Interferon-β Production by Interacting With IkB Kinase ε

Authors :
Zifeng Zheng
Yuncheng Li
Mudan Zhang
Yalan Liu
Ming Fu
Sitang Gong
Qinxue Hu
Source :
Frontiers in Microbiology, Vol 12 (2021), Frontiers in Microbiology
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Human norovirus (HuNoV) is the leading cause of epidemic acute gastroenteritis worldwide. Type I interferons (IFN)-α/β are highly potent cytokines that are initially identified for their essential roles in antiviral defense. It was reported that HuNoV infection did not induce IFN-β expression but was controlled in the presence of IFN-β in human intestinal enteroids and a gnotobiotic pig model, suggesting that HuNoV has likely developed evasion countermeasures. In this study, we found that a cDNA clone of GII.4 HuNoV, the predominantly circulating genotype worldwide, inhibits the production of IFN-β and identified the viral NTPase as a key component responsible for such inhibition. HuNoV NTPase not only inhibits the activity of IFN-β promoter but also the mRNA and protein production of IFN-β. Additional studies indicate that NTPase inhibits the phosphorylation and nuclear translocation of interferon-regulatory factor-3 (IRF-3), leading to the suppression of IFN-β promoter activation. Mechanistically, NTPase interacts with IkB kinase ε (IKKε), an important factor for IRF-3 phosphorylation, and such interaction blocks the association of IKKε with unanchored K48-linked polyubiquitin chains, resulting in the inhibition of IKKε phosphorylation. Further studies demonstrated that the 1-179 aa domain of NTPase which interacts with IKKε is critical for the suppression of IFN-β production. Our findings highlight the role of HuNoV NTPase in the inhibition of IFN-β production, providing insights into a novel mechanism underlying how HuNoV evades the host innate immunity.

Details

Language :
English
ISSN :
1664302X
Volume :
12
Database :
OpenAIRE
Journal :
Frontiers in Microbiology
Accession number :
edsair.doi.dedup.....ce766718f7170f276937c0e6bfaca921
Full Text :
https://doi.org/10.3389/fmicb.2021.687933/full