Back to Search Start Over

Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue

Authors :
Carla Daniele Pacheco Rinaldin
Caroline Ribeiro de Souza
Luis Augusto Teixeira
Júlia Ávila de Oliveira
Eduardo Mendonça Scheeren
Daniel Boari Coelho
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2021

Abstract

In response to sudden perturbations of stance stability, muscles of both legs are activated for balance recovery. In conditions that one of the legs has a reduced capacity to respond, the opposite leg is predicted to compensate by responding more powerfully to restore stable upright stance. In this investigation, we aimed to evaluate between-leg compensatory control in automatic postural responses to sudden perturbations in a situation in which plantar flexor muscles of a single leg were fatigued. Young participants were evaluated in response to a series of perturbations inducing forward body sway, with a focus on activation of plantar flexor muscles: lateral and medial gastrocnemii and soleus. Muscular responses were analyzed through activation magnitude and latency of muscular activation onset. For evaluation of balance and postural stability, we also analyzed the center of pressure and upper trunk displacement and weight-bearing asymmetry between the legs. Responses were assessed in three conditions: pre-fatigue, under single-leg fatigue, and following the recovery of muscular function. Results showed (a) compensation of the non-fatigued leg through the increased magnitude of muscular activation in the first perturbation under fatigue; (b) adaptation in the non-fatigued leg over repetitive perturbations, with a progressive decrement of muscular activation over trials; and (c) maintenance of increased muscular activation of the non-fatigued leg following fatigue dissipation. These findings suggest that the central nervous system is able to modulate the descending motor drive individually for each leg's muscles apparently based on their potential contribution for the achievement of the behavioral aim of recovering stable body balance following stance perturbations.

Details

Database :
OpenAIRE
Journal :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....cef81140ebdb9870a5fc2b039993521e