Back to Search Start Over

Optical portable instrument for the determination of CO2 in indoor environments

Authors :
Pablo Escobedo
Antonio Martínez-Olmos
P.A. García-López
M.D. Fernández-Ramos
Luis Fermín Capitán-Vallvey
F. Moreno-Puche
Publication Year :
2020
Publisher :
Elsevier, 2020.

Abstract

A portable device based on a colorimetric sensor to determine the atmospheric level of CO2 gas is presented in this work. The system is based on a low-cost, low-power System on a Chip (SoC) microcontroller with integrated Wi-Fi. A user-friendly application was developed to monitor and log the CO2 measurements when the system is connected to a Wi-Fi network. The sensing membrane is directly deposited on the surface of the colour detector, thus reducing the complexity of the system. This sensing membrane is formed by a pH indicator α-naphtholphthalein, tetramethylammonium hydroxide pentahydrate, 1-ethyl-3-methylimidazolium tetrafluoroborate, Tween 20 and hydroxypropyl methylcellulose as the hydrophilic polymer. The system has been fully characterized, obtaining response and recovery times of 1.3 and 2.5 s, respectively, a limit of detection of 51 ppm, and an average resolution of 6.3 ppm. This portable device was applied for the in-situ determination of CO2 gas in the atmosphere inside classrooms in several secondary schools. The measurements were taken during complete workdays and the results were statistically compared with the same measurements taken using a commercially available non-dispersive infra-red (NDIR) device. No significant statistical differences were found between the results obtained using both devices. A complete statistical treatment of the measurements made with the proposed portable device was carried out. The obtained results show that the concentration of CO2 gas in some schools was higher than the desired concentration, with regard to influencing the student's health, safety, productivity and comfort. This demonstrates the need to control this parameter to ensure appropriate indoor environmental quality (IEQ).

Details

Language :
English
ISSN :
00399140
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....cf145e5d610b68ae850b533e4c450b9a