Back to Search Start Over

Copula-based conformal prediction for Multi-Target Regression

Authors :
Soundouss Messoudi
Sylvain Rousseau
Sébastien Destercke
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc)
Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Pattern Recognition, Pattern Recognition, Elsevier, 2021, 120, pp.108101. ⟨10.1016/j.patcog.2021.108101⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

There are relatively few works dealing with conformal prediction for multi-task learning issues, and this is particularly true for multi-target regression. This paper focuses on the problem of providing valid (i.e., frequency calibrated) multi-variate predictions. To do so, we propose to use copula functions applied to deep neural networks for inductive conformal prediction. We show that the proposed method ensures efficiency and validity for multi-target regression problems on various data sets.<br />Comment: 17 pages, 8 figures, under review

Details

ISSN :
00313203
Database :
OpenAIRE
Journal :
Pattern Recognition, Pattern Recognition, Elsevier, 2021, 120, pp.108101. ⟨10.1016/j.patcog.2021.108101⟩
Accession number :
edsair.doi.dedup.....cf46d35534a1218e89c917c2a1b3aac9
Full Text :
https://doi.org/10.48550/arxiv.2101.12002