Back to Search Start Over

RNA-Seq-based transcriptome analysis of reproduction- and growth-related genes in Lateolabrax japonicus ovaries at four different ages

Authors :
Lihua Qiu
Pengfei Wang
Chao Zhao
Source :
Molecular biology reports. 45(6)
Publication Year :
2018

Abstract

Lateolabrax japonicus is an abundant marine aquatic fish species that is commonly cultured in East Asia due to its high commercial value. In this study, RNA-Seq analysis of L. japonicus was carried out to identify reproduction- and growth-related genes expressed in L. japonicus ovaries at different ages using Illumina sequencing technology. In total, 334,388,688 high-quality reads were obtained in four libraries, i.e., 4-year-old ovaries (4th_Ovary), 3-year-old ovaries (3rd_Ovary), 2-year-old ovaries (2nd_Ovary), and 1-year-old ovaries (1st_Ovary). The reads were then de novo assembled into 101,860 unigenes with an average unigene length of 879 bp. In total, 30,142 unigenes (29.59%) were annotated in public databases, including Nr database (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of proteins (COG), based on sequence similarity. Comparative analysis revealed that there were 35,749, 43,657, and 36,819 differentially expressed genes (DEGs) in three comparisons (4th_Ovary versus 3rd_Ovary, 4th_Ovary versus 2rd_Ovary, and 4th_Ovary versus 1st_Ovary, respectively). In total, 24,295 DEGs were different expressed in 4th_Ovary. Enrichment and pathway analyses of the DEGs were also carried out to excavate the candidate genes related to reproduction and growth, and 402 genes that potential involved in the regulation of reproduction and growth were identified, e.g., GnRHR (GnRH receptor), GHR 2 (growth hormone receptor 2), I_LGF1R (insulin-like growth factor 1 receptor), etc. Our findings expanded the genomic resources of L. japonicus and provided fundamental information for further studies.

Details

ISSN :
15734978
Volume :
45
Issue :
6
Database :
OpenAIRE
Journal :
Molecular biology reports
Accession number :
edsair.doi.dedup.....cf7a68dd6fa05f9d6a0e7b8f10fac91e