Back to Search Start Over

Human Activity Recognition Models in Ontology Networks

Authors :
Syed Yusha Kareem
Luca Buoncompagni
Fulvio Mastrogiovanni
Source :
IEEE Transactions on Cybernetics. 52:5587-5606
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

We present Arianna+, a framework to design networks of ontologies for representing knowledge enabling smart homes to perform human activity recognition online. In the network, nodes are ontologies allowing for various data contextualisation, while edges are general-purpose computational procedures elaborating data. Arianna+ provides a flexible interface between the inputs and outputs of procedures and statements, which are atomic representations of ontological knowledge. Arianna+ schedules procedures on the basis of events by employing logic-based reasoning, i.e., by checking the classification of certain statements in the ontologies. Each procedure involves input and output statements that are differently contextualised in the ontologies based on specific prior knowledge. Arianna+ allows to design networks that encode data within multiple contexts and, as a reference scenario, we present a modular network based on a spatial context shared among all activities and a temporal context specialised for each activity to be recognised. In the paper, we argue that a network of small ontologies is more intelligible and has a reduced computational load than a single ontology encoding the same knowledge. Arianna+ integrates in the same architecture heterogeneous data processing techniques, which may be better suited to different contexts. Thus, we do not propose a new algorithmic approach to activity recognition, instead, we focus on the architectural aspects for accommodating logic-based and data-driven activity models in a context-oriented way. Also, we discuss how to leverage data contextualisation and reasoning for activity recognition, and to support an iterative development process driven by domain experts.<br />The paper has been accepted for publication in the IEEE Transactions on Cybernetics journal on April 2021 and with DOI 10.1109/TCYB.2021.3073539. It is an extension of arXiv:1707.03988v1 and it is related to the arXiv:1809.08208v1 article. It contains 20 pages, 6 figures, 4 tables and 2 Appendices

Details

ISSN :
21682275 and 21682267
Volume :
52
Database :
OpenAIRE
Journal :
IEEE Transactions on Cybernetics
Accession number :
edsair.doi.dedup.....cfa6320cbb5f454f5ea3351f5c1ee34c