Back to Search Start Over

Fast and Efficient Reconstruction of Digitized Frescoes

Authors :
Emanuel Aldea
Nicolas Lermé
Sylvie Le Hégarat-Mascle
Boyang Zhang
Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE)
École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-CY Cergy Paris Université (CY)
Méthodes et Outils pour les Signaux et Systèmes (SATIE-MOSS)
Systèmes d'Information et d'Analyse Multi-Echelles (SIAME)
École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-CY Cergy Paris Université (CY)-École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-CY Cergy Paris Université (CY)-Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE)
École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-CY Cergy Paris Université (CY)-École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-CY Cergy Paris Université (CY)
Université Paris-Saclay
Source :
Pattern Recognition Letters, Pattern Recognition Letters, Elsevier, 2020, ⟨10.1016/j.patrec.2020.08.006⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Virtually recomposing destroyed frescoes is of great importance for heritage conservation. Given a digitized fresco image and a digitized set of fragments, such a problem is challenging due to the potentially large number of fragments, their irregular shape, uniqueness and non-overlapping constraints, the possible absence of fragments and the possible presence of small, homogeneous, eroded and/or spurious fragments. To cope with these specific features, we propose in this paper a fast and efficient non-dense approach benefiting from previous developments in pattern matching. Preliminary experiments led on simulations exhibit a mean accuracy above 90% with a mean translation error of less than 4 pixels and a mean orientation error of about 1 degree. An analysis of fresco and fragment features impacting the algorithm is also provided. Compared to a dense approach and the recent DeepMatch approach, the proposed one remains competitive both in running time and accuracy.

Details

Language :
English
ISSN :
01678655
Database :
OpenAIRE
Journal :
Pattern Recognition Letters, Pattern Recognition Letters, Elsevier, 2020, ⟨10.1016/j.patrec.2020.08.006⟩
Accession number :
edsair.doi.dedup.....cfa7b583572fa9a5e9c4a9d8d02efd58
Full Text :
https://doi.org/10.1016/j.patrec.2020.08.006⟩