Back to Search
Start Over
Human mesenchymal stem cells in the tumour microenvironment promote ovarian cancer progression: the role of platelet-activating factor
- Source :
- BMC Cancer, BMC Cancer, Vol 18, Iss 1, Pp 1-10 (2018)
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Background The tumour microenvironment conferred by mesenchymal stem cells (MSCs) plays a key role in tumour development and progression. We previously determined that platelet-activating factor receptor (PAFR) was overexpressed in ovarian cancer cells (OCCs) and that PAF can promote ovarian cancer progression via PAF/PAFR-mediated inflammatory signalling pathways. Evidence suggests that MSCs can secrete high concentrations of PAF. Here, we investigated the role of PAF/PAFR signalling in the microenvironment mediated by MSCs and OCCs and its effect on cancer progression. Methods The PAF concentrations in the culture media of MSCs, OCCs and co-cultured MSCs and OCCs were determined by ELISA. The effects of MSCs on OCCs in vitro were assessed on cells treated with conditioned medium (CM). The expression and phosphorylation of key proteins in the PAF/PAFR signalling pathway were evaluated. In vivo, MSCs/RFP and SKOV3 cells were co-administered at different proportions to nude mice by interscapular injection. Mice in the WEB2086 group were intraperitoneally injected with the PAFR antagonist WEB2086 at a dose of 1 mg/kg.d for the duration of the animal experiments. Tumour progression was observed, and the weight and survival time of mice were measured. The PAF concentration in peripheral and tumour site blood was determined by ELISA. Results High concentrations of PAF were detected in CM from MSCs and MSCs co-cultured with OCCs. Both types of medium promoted non-mucinous OCC proliferation and migration but had no effect on mucinous-type OCCs. These effects could be blocked by PAFR inhibitors. The expression and phosphorylation of key proteins in the PAF/PAFR pathway significantly increased upon treatment with PAF and MSC-CM. In vivo, the tumour volume was larger following co-injection of SKOV3 cells and MSCs/RFP than following injection of SKOV3 cells alone. The tumour-promoting effect of MSCs/RFP was blocked by the PAFR antagonist WEB2086. Serum PAF concentrations significantly increased in co-injected mice. Conclusion Our results suggest that the tumour-promoting effect of MSCs on OCCs via their cross-talk in the tumour microenvironment was, at least in part, mediated by the PAF/PAFR pathway, suggesting a new target for the treatment of ovarian cancer.
- Subjects :
- 0301 basic medicine
Cancer Research
Microenvironment
Mesenchymal stem cells (MSCs)
Mice, Nude
Platelet Membrane Glycoproteins
lcsh:RC254-282
Receptors, G-Protein-Coupled
Mice
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
Ovarian cancer
In vivo
Cell Line, Tumor
Tumor Microenvironment
Genetics
medicine
Animals
Humans
Platelet Activating Factor
Receptor
Cell Proliferation
Ovarian Neoplasms
Mice, Inbred BALB C
Platelet-activating factor (PAF)
Platelet-activating factor
Chemistry
Mesenchymal stem cell
Cancer
Mesenchymal Stem Cells
Azepines
Triazoles
lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
medicine.disease
Coculture Techniques
Hedgehog signaling pathway
In vitro
030104 developmental biology
Oncology
030220 oncology & carcinogenesis
Disease Progression
Cancer research
Female
Platelet Aggregation Inhibitors
Research Article
Subjects
Details
- ISSN :
- 14712407
- Volume :
- 18
- Database :
- OpenAIRE
- Journal :
- BMC Cancer
- Accession number :
- edsair.doi.dedup.....cfce79e0e866a6fdeaa4a226bdf9107e
- Full Text :
- https://doi.org/10.1186/s12885-018-4918-0