Back to Search
Start Over
Application of the isotope pairing technique in sediments:Use, challenges, and new directions
- Source :
- Robertson, E K, Bartoli, M, Brüchert, V, Dalsgaard, T, Hall, P O J, Hellemann, D, Hietanen, S, Zilius, M & Conley, D J 2019, ' Application of the isotope pairing technique in sediments : Use, challenges, and new directions ', Limnology and Oceanography: Methods, vol. 17, no. 2, pp. 112-136 . https://doi.org/10.1002/lom3.10303, Limnology and oceanography: methods, Hoboken : Wiley, 2019, vol. 17, iss. 2, p. 112-136
- Publication Year :
- 2019
-
Abstract
- Determining accurate rates of benthic nitrogen (N) removal and retention pathways from diverse environments is critical to our understanding of process distribution and constructing reliable N budgets and models. The whole-core 15 N isotope pairing technique (IPT) is one of the most widely used methods to determine rates of benthic nitrate-reducing processes and has provided valuable information on processes and factors controlling N removal and retention in aquatic systems. While the whole core IPT has been employed in a range of environments, a number of methodological and environmental factors may lead to the generation of inaccurate data and are important to acknowledge for those applying the method. In this review, we summarize the current state of the whole core IPT and highlight some of the important steps and considerations when employing the technique. We discuss environmental parameters which can pose issues to the application of the IPT and may lead to experimental artifacts, several of which are of particular importance in environments heavily impacted by eutrophication. Finally, we highlight the advances in the use of the whole-core IPT in combination with other methods, discuss new potential areas of consideration and encourage careful and considered use of the whole-core IPT. With the recognition of potential issues and proper use, the whole-core IPT will undoubtedly continue to develop, improve our understanding of benthic N cycling and allow more reliable budgets and predictions to be made.
- Subjects :
- 0106 biological sciences
010504 meteorology & atmospheric sciences
Computer science
Process (engineering)
010604 marine biology & hydrobiology
Anaerobic ammonium oxidation
Ocean Engineering
15n isotope
isotope pairing technique
benthic oxygen dynamics
sediments
01 natural sciences
6. Clean water
Lead (geology)
Fresh water
Baltic sea
13. Climate action
14. Life underwater
Biochemical engineering
Biological sciences
0105 earth and related environmental sciences
Subjects
Details
- Language :
- English
- ISSN :
- 15415856
- Database :
- OpenAIRE
- Journal :
- Robertson, E K, Bartoli, M, Brüchert, V, Dalsgaard, T, Hall, P O J, Hellemann, D, Hietanen, S, Zilius, M & Conley, D J 2019, ' Application of the isotope pairing technique in sediments : Use, challenges, and new directions ', Limnology and Oceanography: Methods, vol. 17, no. 2, pp. 112-136 . https://doi.org/10.1002/lom3.10303, Limnology and oceanography: methods, Hoboken : Wiley, 2019, vol. 17, iss. 2, p. 112-136
- Accession number :
- edsair.doi.dedup.....cff6b128bf3b3f492a70dd58a47d6d0f
- Full Text :
- https://doi.org/10.1002/lom3.10303