Back to Search Start Over

Generalized ocean color inversion model for retrieving marine inherent optical properties

Authors :
Werdell, P. J.
Franz, B. A.
Bailey, S. W.
Feldman, G.C.
Boss, E.
Brando, V. E.
Dowell, M.
Hirata, T.
Lavender, S.
Lee, Z.
Loisel, Hubert
Maritorena, S.
Mélin, F.
Moore, T.
Smyth, T.
Antoine, David
Devred, E.
Hembise, O.
d'Andon, F.
Mangin, Alain
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG)
Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord])
Centre National de la Recherche Scientifique (CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut national des sciences de l'Univers (INSU - CNRS)
Source :
Applied optics, Applied optics, 2013, 52 (10), pp.2019-2037. ⟨10.1364/AO.52.002019⟩, Applied optics, Optical Society of America, 2013, 52 (10), pp.2019-2037. ⟨10.1364/AO.52.002019⟩
Publication Year :
2013

Abstract

International audience; Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

Details

ISSN :
15394522, 1559128X, 21553165, and 00036935
Volume :
52
Issue :
10
Database :
OpenAIRE
Journal :
Applied optics
Accession number :
edsair.doi.dedup.....d018514eeec4eeaa640b9cd35f35faa9