Back to Search Start Over

Globally Optimal Solution to Inverse Kinematics of 7DOF Serial Manipulator

Authors :
Pavel Trutman
Mohab Safey El Din
Didier Henrion
Tomas Pajdla
Czech Institute of Informatics, Robotics and Cybernetics [Prague] (CIIRC)
Czech Technical University in Prague (CTU)
Polynomial Systems (PolSys)
LIP6
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Équipe Méthodes et Algorithmes en Commande (LAAS-MAC)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
P. Trutman was supported by the EU Structural and Investment Funds, Operational Programe Research, Development and Education under the project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000468) and Grant Agency of the CTU Prague project SGS19/173/OHK3/3T/13. T. Pajdla was supported by EU Structural and Investment Funds, Operational Programe Research, Development and Education under the project The Robotics for Industry 4.0 project (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000470, the EUH2020 ARtwin No. 856994, and EU H2020 SPRING No. 871245 Projects.Didier Henrion and Mohab Safey El Din are supported by the European Union’s Horizon2020 research and innovation programme under the MarieSkłodowska-Curie grant agreement N°813211 (POEMA). Mohab Safey ElDin is supported by the ANR grants ANR-18-CE33-0011 Sesame, ANR-19-CE40-0018 De Rerum Natura, ANR-19-CE48-0015 ECARP and the CAMiSAdo PGMO project
ANR-18-CE33-0011,SESAME,Singularités Et Stabilité des AsservisseMEnts référencés capteurs(2018)
ANR-19-CE40-0018,DeRerumNatura,Décider l'irrationalité et la transcendance(2019)
ANR-19-CE48-0015,ECARP,Algorithmes efficaces et exacts pour la planification de trajectoire en robotique(2019)
European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme)
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
European Project: 813211,H2020,POEMA(2019)
Faculty of Electrical Engineering [Prague] (FEL CTU)
Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)
Source :
IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, 2022, 7 (3), pp.6012-6019. ⟨10.1109/LRA.2022.3163444⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; The Inverse Kinematics (IK) problem is concerned with finding robot control parameters to bring the robot into a desired position under the kinematics and collision constraints. We present a global solution to the optimal IK problem for a general serial 7DOF manipulator with revolute joints and a quadratic polynomial objective function. We show that the kinematic constraints due to rotations can be all generated by the second-degree polynomials. This is an important result since it significantly simplifies the further step where we find the optimal solution by Lasserre relaxations of nonconvex polynomial systems. We demonstrate that the second relaxation is sufficient to solve a general 7DOF IK problem. Our approach is certifiably globally optimal. We demonstrate the method on the 7DOF KUKA LBR IIWA manipulator and show that we are in practice able to compute the optimal IK or certify infeasibility in 99.9 % tested poses. We also demonstrate that by the same approach, we are able to solve the IK problem for a random generic manipulator with seven revolute joints.

Details

Language :
English
ISSN :
23773766
Database :
OpenAIRE
Journal :
IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, 2022, 7 (3), pp.6012-6019. ⟨10.1109/LRA.2022.3163444⟩
Accession number :
edsair.doi.dedup.....d04d6878b40293a1e19e199cad5e2ecd
Full Text :
https://doi.org/10.1109/LRA.2022.3163444⟩