Back to Search
Start Over
Scaling law for computational imaging using spherical optics
- Source :
- Journal of the Optical Society of America. A, Optics, image science, and vision. 28(12)
- Publication Year :
- 2011
-
Abstract
- The resolution of a camera system determines the fidelity of visual features in captured images. Higher resolution implies greater fidelity and, thus, greater accuracy when performing automated vision tasks, such as object detection, recognition, and tracking. However, the resolution of any camera is fundamentally limited by geometric aberrations. In the past, it has generally been accepted that the resolution of lenses with geometric aberrations cannot be increased beyond a certain threshold. We derive an analytic scaling law showing that, for lenses with spherical aberrations, resolution can be increased beyond the aberration limit by applying a postcapture deblurring step. We then show that resolution can be further increased when image priors are introduced. Based on our analysis, we advocate for computational camera designs consisting of a spherical lens shared by several small planar sensors. We show example images captured with a proof-of-concept gigapixel camera, demonstrating that high resolution can be achieved with a compact form factor and low complexity. We conclude with an analysis on the trade-off between performance and complexity for computational imaging systems with spherical lenses.
- Subjects :
- Deblurring
business.industry
Computer science
Image quality
Resolution (electron density)
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Image processing
Tracking (particle physics)
Atomic and Molecular Physics, and Optics
Object detection
Electronic, Optical and Magnetic Materials
Optics
Computer Science::Computer Vision and Pattern Recognition
Digital image processing
Computer Vision and Pattern Recognition
Deconvolution
business
Subjects
Details
- ISSN :
- 15208532
- Volume :
- 28
- Issue :
- 12
- Database :
- OpenAIRE
- Journal :
- Journal of the Optical Society of America. A, Optics, image science, and vision
- Accession number :
- edsair.doi.dedup.....d067a595fdacfc8722b5531b0211c488