Back to Search Start Over

MR compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation

Authors :
J.E. Mackewn
Paul Marsden
Michael Perkuhn
Bjoern Weissler
Dirk Heberling
Christoph Lerche
Pierre Gebhardt
Torsten Solf
Fabian Kiessling
Jakob Wehner
Volkmar Schulz
Benjamin Goldschmidt
Source :
Physics in Medicine and Biology. 59:5119-5139
Publication Year :
2014
Publisher :
IOP Publishing, 2014.

Abstract

The combination of Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) into a single device is being considered a promising tool for molecular imaging as it combines the high sensitivity of PET with the functional and anatomical images of MRI. For highest performance, a scalable, MR compatible detector architecture with a small form factor is needed, targeting at excellent PET signal-to-noise ratios and time-of-flight information. Therefore it is desirable to use silicon photo multipliers and to digitize their signals directly in the detector modules inside the MRI bore. A preclinical PET/RF insert for clinical MRI scanner was built to demonstrate a new architecture and to study the interactions between the two modalities.The disturbance of the MRI's static magnetic field stays below 2 ppm peak-to-peak within a diameter of 56 mm (90 mm using standard automatic volume shimming). MRI SNR is decreased by 14%, RF artefacts (dotted lines) are only visible in sequences with very low SNR. Ghosting artefacts are visible to the eye in about 26% of the EPI images, severe ghosting only in 7.6%. Eddy-current related heating effects during long EPI sequences are noticeable but with low influence of 2% on the coincidences count rate. The time resolution of 2.5 ns, the energy resolution of 29.7% and the volumetric spatial resolution of 1.8 mm(3) in the PET isocentre stay unaffected during MRI operation. Phantom studies show no signs of other artefacts or distortion in both modalities. A living rat was simultaneously imaged after the injection with (18)F-Fluorodeoxyglucose (FDG) proving the in vivo capabilities of the system.

Details

ISSN :
13616560 and 00319155
Volume :
59
Database :
OpenAIRE
Journal :
Physics in Medicine and Biology
Accession number :
edsair.doi.dedup.....d09f7e3c62db20d27dbee378f385ed2c