Back to Search Start Over

Analysis of a finite-volume scheme for a single-species biofilm model

Authors :
Christoph Helmer
Ansgar Jüngel
Antoine Zurek
Laboratoire de Mathématiques Appliquées de Compiègne (LMAC)
Université de Technologie de Compiègne (UTC)
Institute for Analysis and Scientific Computing [Wien]
Vienna University of Technology (TU Wien)
Zurek, Antoine
Source :
HAL
Publication Year :
2023
Publisher :
Elsevier BV, 2023.

Abstract

An implicit Euler finite-volume scheme for a parabolic reaction-diffusion system modeling biofilm growth is analyzed and implemented. The system consists of a degenerate-singular diffusion equation for the biomass fraction, which is coupled to a diffusion equation for the nutrient concentration, and it is solved in a bounded domain with Dirichlet boundary conditions. By transforming the biomass fraction to an entropy-type variable, it is shown that the numerical scheme preserves the lower and upper bounds of the biomass fraction. The existence and uniqueness of a discrete solution and the convergence of the scheme are proved. Numerical experiments in one and two space dimensions illustrate, respectively, the rate of convergence in space of our scheme and the temporal evolution of the biomass fraction and the nutrient concentration.

Details

ISSN :
01689274
Volume :
185
Database :
OpenAIRE
Journal :
Applied Numerical Mathematics
Accession number :
edsair.doi.dedup.....d141308faedf4d64044da31b2c0963aa
Full Text :
https://doi.org/10.1016/j.apnum.2022.12.002