Back to Search
Start Over
Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy
- Source :
- Repositório Institucional da UFRGS, Universidade Federal do Rio Grande do Sul (UFRGS), instacron:UFRGS
- Publication Year :
- 2015
-
Abstract
- Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.
- Subjects :
- Diffraction
Physics
Sólitons em plasmas
Degenerate energy levels
FOS: Physical sciences
Electron
Acoustic wave
Physics - Plasma Physics
Ondas íon-acústicas em plasmas
Plasma Physics (physics.plasm-ph)
Distribution function
Quantum mechanics
Soliton
Teoria cinetica de plasmas
Degeneracy (mathematics)
Quantum
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da UFRGS, Universidade Federal do Rio Grande do Sul (UFRGS), instacron:UFRGS
- Accession number :
- edsair.doi.dedup.....d151ec9ee36475e356ba22fdc4076f16