Back to Search Start Over

Elafin Treatment Rescues EGFR-Klf4 Signaling and Lung Cell Survival in Ventilated Newborn Mice

Authors :
Suleman Khan
Stefanie Preuss
Marlene Rabinovitch
Carlos Milla
Jasmine Mohr
Dharmesh Hirani
Sana Mujahid
Juliet Masumi
Robert Ertsey
Lu Tian
Miguel A. Alejandre Alcazar
Lucia M. Mokres
Richard D. Bland
Mark Kaschwich
Source :
American Journal of Respiratory Cell and Molecular Biology. 59:623-634
Publication Year :
2018
Publisher :
American Thoracic Society, 2018.

Abstract

Mechanical ventilation with O(2)-rich gas (MV-O(2)) inhibits alveologenesis and lung growth. We previously showed that MV-O(2) increased elastase activity and apoptosis in lungs of newborn mice, whereas elastase inhibition by elafin suppressed apoptosis and enabled lung growth. Pilot studies suggested that MV-O(2) reduces lung expression of prosurvival factors phosphorylated epidermal growth factor receptor (pEGFR) and Krüppel-like factor 4 (Klf4). Here, we sought to determine whether apoptosis and lung growth arrest evoked by MV-O(2) reflect disrupted pEGFR-Klf4 signaling, which elafin treatment preserves, and to assess potential biomarkers of bronchopulmonary dysplasia (BPD). Five-day-old mice underwent MV with air or 40% O(2) for 8–24 hours with or without elafin treatment. Unventilated pups served as controls. Immunoblots were used to assess lung pEGFR and Klf4 proteins. Cultured MLE-12 cells were exposed to AG1478 (EGFR inhibitor), Klf4 siRNA, or vehicle to assess effects on proliferation, apoptosis, and EGFR regulation of Klf4. Plasma elastase and elafin levels were measured in extremely premature infants. In newborn mice, MV with air or 40% O(2) inhibited EGFR phosphorylation and suppressed Klf4 protein content in lungs (vs. unventilated controls), yielding increased apoptosis. Elafin treatment inhibited elastase, preserved lung pEGFR and Klf4, and attenuated the apoptosis observed in lungs of vehicle-treated mice. In MLE-12 studies, pharmacological inhibition of EGFR and siRNA suppression of Klf4 increased apoptosis and reduced proliferation, and EGFR inhibition decreased Klf4. Plasma elastase levels were more than twofold higher, without a compensating increase of plasma elafin, in infants with BPD, compared to infants without BPD. These findings indicate that pEGFR-Klf4 is a novel prosurvival signaling pathway in lung epithelium that MV disrupts. Elafin preserves pEGFR-Klf4 signaling and inhibits apoptosis, thereby enabling lung growth during MV. Together, our animal and human data raise the question: would elastase inhibition prevent BPD in high-risk infants exposed to MV-O(2)?

Details

ISSN :
15354989 and 10441549
Volume :
59
Database :
OpenAIRE
Journal :
American Journal of Respiratory Cell and Molecular Biology
Accession number :
edsair.doi.dedup.....d17e1c7544657a64bbf993dd568b854a
Full Text :
https://doi.org/10.1165/rcmb.2017-0332oc