Back to Search Start Over

Thermocline thermal energy storage optimisation combining exergy and life cycle assessment

Authors :
Régis Olives
Pierre Neveu
D. Le Roux
B. Rebouillat
Y. Lalau
Procédés, Matériaux et Energie Solaire (PROMES)
Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS)
Université de Perpignan Via Domitia (UPVD)
Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement (RAPSODEE)
Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Source :
Energy Conversion and Management, Energy Conversion and Management, Elsevier, 2021, 248, pp.1-11/114787. ⟨10.1016/j.enconman.2021.114787⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

International audience; Thermocline thermal energy storage is one of the most promising solutions for recovering waste heat in industrial plants. This paper aims to optimise the shape of a thermal energy storage to minimise its environmental impacts and maximise its exergy efficiency. The reference storage is an existing industrial high-temperature air/ceramic packed-bed heat storage called EcoStock®. The physical model used to determine the performances of the tank is a one dimensional model with two equations: one for the heat transfer fluid and one for the filler material. The environmental impacts are analysed using a life cycle assessment through four selected indicators: cumulative energy demand, global warming potential, abiotic depletion potential and particulate matter. To solve this multi-criteria problem, a particle swarm optimisation algorithm was applied with several exergy and environmental weighting factors. A Pareto set is obtained, bounded by the single exergy or environmental optimisations. Favouring exergy efficiency reduces the volume of the tank. However, environmental footprint of the tank is increased: the indicators of cumulative energy demand and abiotic depletion potential are considerably higher. The shape of the tank evolves with the exergy weight, from a square shape (environmental optimisation) to a tapered shape (exergy optimisation).

Details

ISSN :
01968904
Volume :
248
Database :
OpenAIRE
Journal :
Energy Conversion and Management
Accession number :
edsair.doi.dedup.....d18e03c1c3015e694f95c2c7d807e0ac
Full Text :
https://doi.org/10.1016/j.enconman.2021.114787