Back to Search Start Over

Accurately Inferring Compliance to Five Major Food Guidelines Through Simplified Surveys: Applying Data Mining to the UK National Diet and Nutrition Survey

Authors :
Nicholas Rosso
Philippe J. Giabbanelli
Source :
JMIR Public Health and Surveillance. 4:e56
Publication Year :
2018
Publisher :
JMIR Publications Inc., 2018.

Abstract

Background: National surveys in public health nutrition commonly record the weight of every food consumed by an individual. However, if the goal is to identify whether individuals are in compliance with the 5 main national nutritional guidelines (sodium, saturated fats, sugars, fruit and vegetables, and fats), much less information may be needed. A previous study showed that tracking only 2.89% of all foods (113/3911) was sufficient to accurately identify compliance. Further reducing the data needs could lower participation burden, thus decreasing the costs for monitoring national compliance with key guidelines. Objective: This study aimed to assess whether national public health nutrition surveys can be further simplified by only recording whether a food was consumed, rather than having to weigh it. Methods: Our dataset came from a generalized sample of inhabitants in the United Kingdom, more specifically from the National Diet and Nutrition Survey 2008-2012. After simplifying food consumptions to a binary value (1 if an individual consumed a food and 0 otherwise), we built and optimized decision trees to find whether the foods could accurately predict compliance with the major 5 nutritional guidelines. Results: When using decision trees of a similar size to previous studies (ie, involving as many foods), we were able to correctly infer compliance for the 5 guidelines with an average accuracy of 80.1%. This is an average increase of 2.5 percentage points over a previous study, showing that further simplifying the surveys can actually yield more robust estimates. When we allowed the new decision trees to use slightly more foods than in previous studies, we were able to optimize the performance with an average increase of 3.1 percentage points. Conclusions: Although one may expect a further simplification of surveys to decrease accuracy, our study found that public health dietary surveys can be simplified (from accurately weighing items to simply checking whether they were consumed) while improving accuracy. One possibility is that the simplification reduced noise and made it easier for patterns to emerge. Using simplified surveys will allow to monitor public health nutrition in a more cost-effective manner and possibly decrease the number of errors as participation burden is reduced.

Details

ISSN :
23692960
Volume :
4
Database :
OpenAIRE
Journal :
JMIR Public Health and Surveillance
Accession number :
edsair.doi.dedup.....d1be0a6cf2fe0c69b11a6b94b3cc054b
Full Text :
https://doi.org/10.2196/publichealth.9536