Back to Search
Start Over
A monolithic conservative level set method with built-in redistancing
- Source :
- Journal of Computational Physics. 379:262-278
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- We introduce a new level set method for representing evolving interfaces. In the case of divergence-free velocity fields, the new method satisfies a conservation principle. Conservation is important for many applications such as modeling two-phase incompressible flow. In the present implementation, the conserved quantity is defined as the integral of a smoothed characteristic function. The new approach embeds level sets into a volume of fluid formulation. The evolution of an approximate signed distance function is governed by a conservation law for its (smoothed) sign. The non-linear level set transport equation is regularized by adding a flux correction term that assures a non-singular Jacobian and penalizes deviations from a distance function. The result is a locally conservative level set method with built-in elliptic redistancing. The continuous model is monolithic in the sense that the level set transport model, the volume of fluid law of mass conservation, and the minimization problem that preserves the approximate distance function property are incorporated into a single equation. There is no need for any extra stabilization, artificial compression, flux limiting, redistancing, mass correction, and other numerical fixes which are commonly used in level set or volume of fluid methods. In addition, there is just one free parameter that controls the strength of regularization and penalization in the model. The accuracy and conservation properties of the monolithic finite element / level set method are illustrated by the results of numerical studies for passive advection of free interfaces.<br />Ergebnisberichte des Instituts für Angewandte Mathematik;586
- Subjects :
- Level set method
Physics and Astronomy (miscellaneous)
Signed distance function
010103 numerical & computational mathematics
01 natural sciences
Level set
Numerische Strömungssimulation
Incompressible flow
Level-Set-Methode
Applied mathematics
0101 mathematics
Conservation of mass
Mathematics
Numerical Analysis
Conservation law
Applied Mathematics
Finite element method
Computer Science Applications
010101 applied mathematics
Computational Mathematics
Modeling and Simulation
Free parameter
Subjects
Details
- ISSN :
- 00219991
- Volume :
- 379
- Database :
- OpenAIRE
- Journal :
- Journal of Computational Physics
- Accession number :
- edsair.doi.dedup.....d1c5602502d14b31b49c9d2a8c9882af