Back to Search
Start Over
A NOTE ON 1-MOTIVES
- Source :
- International Mathematics Research Notices, International Mathematics Research Notices, 2019
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- We prove that for $1$-motives defined over an algebraically closed subfield of $\C$, viewed as Nori motives, the motivic Galois group is the Mumford-Tate group. In particular, the Hodge realization of the tannakian category of (Nori) motives generated by $1$-motives is fully faithful.<br />slightly expanded version. To appear in Intern. Res. Math. Notices
- Subjects :
- Pure mathematics
Mathematics::Number Theory
General Mathematics
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
19E, 14F, 14D, 14C
Galois group
Tannakian category
01 natural sciences
[MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC]
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Mathematics::K-Theory and Homology
Mathematics::Category Theory
0103 physical sciences
FOS: Mathematics
0101 mathematics
Algebraically closed field
Algebraic Geometry (math.AG)
Mathematics
Group (mathematics)
010102 general mathematics
[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
010307 mathematical physics
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Realization (systems)
[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
Subjects
Details
- Language :
- English
- ISSN :
- 10737928 and 16870247
- Database :
- OpenAIRE
- Journal :
- International Mathematics Research Notices, International Mathematics Research Notices, 2019
- Accession number :
- edsair.doi.dedup.....d20725f6084b1749f4069aa65f22ea45