Back to Search Start Over

Wavelengths and Lifetimes of Paper Autofluorescence: A Simple Substrate Screening Process to Enhance the Sensitivity of Fluorescence-Based Assays in Paper

Authors :
Paul Yager
Kamal Shah
Source :
Analytical Chemistry. 89:12023-12029
Publication Year :
2017
Publisher :
American Chemical Society (ACS), 2017.

Abstract

Porous media made of nitrocellulose and glass fiber are common "paper" substrates for lateral flow assays, microfluidic paper analytical devices and other point-of-care diagnostic assays. Such assays commonly use optical labels such as gold nanoparticles, latex beads, or fluorescent nanoparticles to visualize the presence of analytes. Fluorescent labels are commonly used in bioassays to enhance sensitivity, but autoluminescence of the paper substrate worsens signal-to-noise ratios of fluorescence-based assays. To date, there exists no systematic investigation of autoluminescence wavelengths or lifetimes of porous membranes used in lateral flow assays. In response, we quantified the autoluminescence of commonly used porous materials across the visible spectrum via excitation-emission spectroscopy and time-resolved fluorescence spectroscopy, and demonstrate that autoluminescence is solely due to autofluorescence with lifetimes of about 5 ns in the visible spectrum. Counterintuitively, we found that spectroscopy alone does not provide sufficient information to select candidate paper substrates for fluorophore-labeled assays. Therefore, we developed a simple quantitative framework to select a low-fluorescence substrate that minimizes both the overlap of paper and fluorophore emission spectra and the fluorescence intensity on an imaging system of interest (such as a gel imager). Use of this framework was shown to lower the limit of detection of an influenza A nucleoprotein immunoassay by over 50%. The tools developed in this manuscript enable assay developers to screen appropriate, low-fluorescence porous substrates and enhance the sensitivity of membrane-based fluorescence assays.

Details

ISSN :
15206882 and 00032700
Volume :
89
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....d2c2f79465c9da8cfdf5d3986652bd39
Full Text :
https://doi.org/10.1021/acs.analchem.7b02424