Back to Search Start Over

Modulation of endogenous antioxidants by zinc and copper in signal crayfish (Pacifastacus leniusculus)

Authors :
Hailey M. Boyd
Isabela R. Lete
Quinlan R. McLaughlin
Courtney I. Kelly
Mark P. Gunderson
Source :
Chemosphere
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Metal pollution is a long-standing concern and bioindicators are commonly used in ecotoxicological studies to monitor impacted wildlife populations for evidence of sublethal effects. Significant variation in the response of common biomarkers to metals is reported across taxa, thus necessitating careful characterization in model organisms. In this study, we describe the regulation of glutathione S-transferase (GST), glutathione (GSH), and metallothionein (MT) by zinc chloride (0.6, 0.9, 1.2, 2.4, 4.8, 9.6 μg g(−1)) and copper chloride (0.6, 0.9, 1.2 μg g(−1)) in signal crayfish (Pacifastacus leniusculus). Zinc chloride did not alter GST activity relative to controls in the hepatopancreas. Crayfish exposed to copper chloride exhibited decreased GST activity at the lowest dose tested (0.6 μg g(−1)) with no change observed at the higher doses. GSH did not change in response to either metal when sexes were grouped together. MT concentrations increased in response to zinc (2.4, 4.6, and 9.6 μg g(−1) doses) and copper (0.6, 0.9, and 1.2 μg g(−1) doses) in gill tissue. In tail tissue, MT increased at the 2.4 and 4.8 μg g(−1) zinc chloride doses and all the concentrations of copper tested. Sex-specific differences in endogenous antioxidant expression were also analyzed with no clear patterns emerging. We concluded that these endpoints are sensitive to zinc and copper in signal crayfish, although careful interpretation is needed when applying them in field studies given the variation in responses, non-monotonic dose responses, and differences in biotic and abiotic factors that inevitably exist in different aquatic ecosystems.

Details

ISSN :
00456535
Volume :
275
Database :
OpenAIRE
Journal :
Chemosphere
Accession number :
edsair.doi.dedup.....d2dd9030379d09e94a405ea53f84df4f