Back to Search Start Over

Image Transmission Through a Dynamically Perturbed Multimode Fiber by Deep Learning

Authors :
Yaron Bromberg
Sebastien M. Popoff
Shachar Resisi
Université Paris sciences et lettres (PSL)
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Centre National de la Recherche Scientifique (CNRS)
Institut Langevin - Ondes et Images (UMR7587) (IL)
Sorbonne Université (SU)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE25-0008,MOLOTOF,Multiplexage Multimode de la Lumière pour les Télécommunications Optiques Fibrées(2016)
ANR-10-LABX-0024,WIFI,Institut Langevin : Ondes et Images, du Fondamental à l'Innovation(2010)
ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010)
Source :
Laser & Photonics Reviews, Laser & Photonics Reviews, 2021
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; When multimode optical fibers are perturbed, the data that is transmitted through them is scrambled. This presents a major difficulty for many possible applications, such as multimode fiber based telecommunication and endoscopy. To overcome this challenge, a deep learning approach that generalizes over mechanical perturbations is presented. Using this approach, successful reconstruction of the input images from intensity-only measurements of speckle patterns at the output of a 1.5 m-long randomly perturbed multimode fiber is demonstrated. The model's success is explained by hidden correlations in the speckle of random fiber conformations.

Details

Language :
English
Database :
OpenAIRE
Journal :
Laser & Photonics Reviews, Laser & Photonics Reviews, 2021
Accession number :
edsair.doi.dedup.....d3129b3385abae58558fe31cdbb19611