Back to Search
Start Over
Ligand-to-Ligand Charge Transfer within Metal–Organic Frameworks Based on Manganese Coordination Polymers with Tetrathiafulvalene-Bicarboxylate and Bipyridine Ligands
- Source :
- Inorganic Chemistry. 55:6496-6503
- Publication Year :
- 2016
- Publisher :
- American Chemical Society (ACS), 2016.
-
Abstract
- A systematic study on ligand-to-ligand charge-transfer (LLCT) properties of three closely related metal-organic frameworks (MOFs) is presented. These compounds are formulated as [MnL(4,4'-bpy)(H2O)]n·nCH3CN (1), [MnL(bpe)0.5(DMF)]n·2nH2O (2), and [MnL(bpa)(H2O)]n·2nH2O (3) (L = dimethylthio-tetrathiafulvalene-bicarboxylate, 4,4'-bpy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene, bpa = 1,2-bis(4-pyridyl)ethane). The X-ray single-crystal diffractions show that complexes 1-3 are all two-dimensional (2-D) coordination polymers with different frameworks in crystal lattices. Charge-transfer (CT) interactions within these MOFs are visually apparent in colors and vary according to the conjugated states of the bipyridine ligands (4,4'-bpy, bpe, and bpa). Theoretical calculations show that the charge transfer occurs from ligand L to bipyridine. The intensity of the LLCT is in the order of 213 investigated by theoretical calculations and ESR, which indicates that the intensity of CT is related to the bipyridyl conjugated state. Photocurrent responses of these compounds are consequently studied, and the results are in agreement with the intensity of charge transfer and linearly related to the LLCT energy.
- Subjects :
- chemistry.chemical_classification
Ligand
chemistry.chemical_element
02 engineering and technology
Polymer
Manganese
Crystal structure
Conjugated system
010402 general chemistry
021001 nanoscience & nanotechnology
Photochemistry
01 natural sciences
0104 chemical sciences
Inorganic Chemistry
chemistry.chemical_compound
Bipyridine
Crystallography
chemistry
Metal-organic framework
Physical and Theoretical Chemistry
0210 nano-technology
Tetrathiafulvalene
Subjects
Details
- ISSN :
- 1520510X and 00201669
- Volume :
- 55
- Database :
- OpenAIRE
- Journal :
- Inorganic Chemistry
- Accession number :
- edsair.doi.dedup.....d371652128101f2e9d84920ddcd0a828