Back to Search Start Over

MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

Authors :
David R. Williams
Lidia van Driel-Gesztelyi
Deborah Baker
University of California [Santa Cruz] (UC Santa Cruz)
University of California (UC)
Mullard Space Science Laboratory (MSSL)
University College of London [London] (UCL)
Konkoly Observatory
Research Centre for Astronomy and Earth Sciences [Budapest]
Hungarian Academy of Sciences (MTA)-Hungarian Academy of Sciences (MTA)
Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
University of California [Santa Cruz] (UCSC)
University of California
Source :
The Astrophysical Journal, The Astrophysical Journal, 2013, 764 (2), pp.165. ⟨10.1088/0004-637X/764/2/165⟩, The Astrophysical Journal, American Astronomical Society, 2013, 764 (2), pp.165. ⟨10.1088/0004-637X/764/2/165⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations, and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photo-ionisation continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observations of a filament which erupted during the spectacular coronal mass ejection on 2011 June 07. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionised gas as it erupts through the solar atmosphere on a regular basis, without the need for co-ordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.<br />9 pages, 9 figures, 2 animations of figures (MPEG), ApJ (in press)

Details

Language :
English
ISSN :
0004637X and 15384357
Database :
OpenAIRE
Journal :
The Astrophysical Journal, The Astrophysical Journal, 2013, 764 (2), pp.165. ⟨10.1088/0004-637X/764/2/165⟩, The Astrophysical Journal, American Astronomical Society, 2013, 764 (2), pp.165. ⟨10.1088/0004-637X/764/2/165⟩
Accession number :
edsair.doi.dedup.....d381283277fa14aa956935a4cdff0a50
Full Text :
https://doi.org/10.1088/0004-637X/764/2/165⟩