Back to Search Start Over

Automated Orchestration of Security Chains Driven by Process Learning

Authors :
Stephan Merz
Abdelkader Lahmadi
Rémi Badonnel
Nicolas Schnepf
Resilience and Elasticity for Security and ScalabiliTy of dynamic networked systems (RESIST)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Modeling and Verification of Distributed Algorithms and Systems (VERIDIS)
Max-Planck-Institut für Informatik (MPII)
Max-Planck-Gesellschaft-Max-Planck-Gesellschaft-Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM)
European Project: 830927,CONCORDIA(2019)
Zincir-Heywood, Nur
Diao, Yixin
Mellia, Marco
Source :
Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning, Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning, Wiley, 2021, 978-1-119-67550-1. ⟨10.1002/9781119675525.ch12⟩, Schnepf, N, Badonnel, R, Lahmadi, A & Merz, S 2021, Automated Orchestration of Security Chains Driven by Process Learning . in N Zincir-Heywood, Y Diao & M Mellia (eds), Communication Networks and Service Management in the era of Artificial Intelligence and Machine Learning . Wiley-IEEE press, IEEE Press Series on Networks and Service Management, pp. 289-320 .
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Connected devices, such as smartphones and tablets, are exposed to a large variety of attacks. Their protection is often challenged by their resource constraints in terms of CPU, memory and energy. Security chains, composed of security functions such as firewalls, intrusion detection systems and data leakage prevention mechanisms, offer new perspectives to protect these devices using software-defined networking and network function virtualization. However, the complexity and dynamics of these chains require new automation techniques to orchestrate them. This chapter describes an automated orchestration methodology for security chains in order to secure connected devices and their applications. This methodology exploits process learning to establish behavioral models and infer security constraints represented as logical predicates. It then generates and merges a set of chains of security functions on the basis of these predicates. These chains are finally compiled into low-level configuration rules and deployed into the network, optimizing for the underlying topology. The benefits and limits of such a methodology combining machine learning and verification techniques are evaluated by a set of experimental results.

Details

Language :
English
ISBN :
978-1-119-67550-1
ISBNs :
9781119675501
Database :
OpenAIRE
Journal :
Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning, Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning, Wiley, 2021, 978-1-119-67550-1. ⟨10.1002/9781119675525.ch12⟩, Schnepf, N, Badonnel, R, Lahmadi, A & Merz, S 2021, Automated Orchestration of Security Chains Driven by Process Learning . in N Zincir-Heywood, Y Diao & M Mellia (eds), Communication Networks and Service Management in the era of Artificial Intelligence and Machine Learning . Wiley-IEEE press, IEEE Press Series on Networks and Service Management, pp. 289-320 .
Accession number :
edsair.doi.dedup.....d39463f14dd820fdfe6ee96dc149471b