Back to Search
Start Over
Influence of surface preparation and cleaning on the passivation of boron diffused silicon surfaces for high efficiency photovoltaics
- Source :
- Thin Solid Films. 636:412-418
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- The use of proper surface preparation and cleaning methods for Si wafers prior to the deposition of passivation layers is essential to minimize surface recombination and realize high efficiencies (> 20%) in crystalline Si photovoltaic cells. In this work, the influence of wafer cleaning on the quality of surface passivation achievable for boron-doped emitters was investigated, including the use of different combinations of HCl, HF, HNO3, and ozonated deionized water (DIO3). These different surface preparations and cleaning sequences were performed on undiffused and boron diffused n-type Cz Si wafers, followed by the deposition of either silicon nitride (SiNx) or an aluminum oxide film capped with SiNx (Al2O3/SiNx stack). Additionally, both planar and anisotropically textured wafers were used. Injection-level dependent photoconductance measurements and calibrated photoluminescence imaging were performed on symmetrical boron diffused samples based on the different cleaning processes and passivation materials described above. Additionally, non-contact corona-Kelvin measurements were used to extract the total charge and interface defect density at the Si surfaces. We found that cleaning variations strongly influence carrier lifetime for SiNx passivated Si, but the effect is less pronounced in the case of Al2O3/SiNx stacks. It was further observed that DIO3-last treatment resulted in higher lifetimes for the SiNx stacks. Overall, it emerged that the (DIO3 + HF + HCl → HF → DIO3) clean is a promising and potentially low cost cleaning sequence for the photovoltaics industry.
- Subjects :
- Photoluminescence
Materials science
Passivation
Silicon
Inorganic chemistry
cleaning
chemistry.chemical_element
02 engineering and technology
Lichteinfang
01 natural sciences
chemistry.chemical_compound
conditioning
Photovoltaics
0103 physical sciences
Materials Chemistry
Passivierung
Wafer
passivation
Boron
Oberflächen: Konditionierung
010302 applied physics
business.industry
diffusion
Metals and Alloys
Surfaces and Interfaces
Carrier lifetime
021001 nanoscience & nanotechnology
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Silicium-Photovoltaik
Silicon nitride
chemistry
Photovoltaik
Optoelectronics
PV Produktionstechnologie und Qualitätssicherung
0210 nano-technology
business
Subjects
Details
- ISSN :
- 00406090
- Volume :
- 636
- Database :
- OpenAIRE
- Journal :
- Thin Solid Films
- Accession number :
- edsair.doi.dedup.....d3991acab69e94421ba5069a66e03f5e
- Full Text :
- https://doi.org/10.1016/j.tsf.2017.06.043