Back to Search Start Over

Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase by Acyclic Nucleoside Phosphonates: A New Class of Antimalarial Therapeutics

Authors :
Tina S. Skinner-Adams
Luke W. Guddat
Dianne T. Keough
John de Jersey
Dana Hocková
Lieve Naesens
Antonín Holý
Source :
Journal of Medicinal Chemistry. 52:4391-4399
Publication Year :
2009
Publisher :
American Chemical Society (ACS), 2009.

Abstract

The purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) is essential for purine nucleotide and hence nucleic acid synthesis in the malaria parasite, Plasmodium falciparum. Acyclic nucleoside phosphonates (ANPs) are analogues of the nucleotide product of the reaction, comprising a purine base joined by a linker to a phosphonate moiety. K(i) values for 19 ANPs were determined for Pf HGXPRT and the corresponding human enzyme, HGPRT. Values for Pf HGXPRT were as low as 100 nM, with selectivity for the parasite enzyme of up to 58. Structures of human HGPRT in complex with three ANPs are reported. On binding, a large mobile loop in the free enzyme moves to partly cover the active site. For three ANPs, the IC(50) values for Pf grown in cell culture were 1, 14, and 46 microM, while the cytotoxic concentration for the first compound was 489 microM. These results provide a basis for the design of potent and selective ANP inhibitors of Pf HGXPRT as antimalarial drug leads.

Details

ISSN :
15204804 and 00222623
Volume :
52
Database :
OpenAIRE
Journal :
Journal of Medicinal Chemistry
Accession number :
edsair.doi.dedup.....d3a1dadd5d4931af8a9313b318c6d2d9