Back to Search Start Over

3D Macroscopic Architectures from Self‐Assembled MXene Hydrogels

Authors :
Dewang Li
Pei Li
Changsheng Qi
Zifeng Lin
Liu Xiaochen
Tongxin Shang
Ying Tao
Zhitan Wu
Quan-Hong Yang
Patrice Simon
Collaborative Innovation Center of Chemical Science and Engineering (CHINA)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Sichuan University - SCU (CHINA)
Tianjin University - TJU (CHINA)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France)
Tianjin University (TJU)
Collaborative Innovation Center of Chemical Science and Engineering [Tianjin, China]
Sichuan University [Chengdu] (SCU)
Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT)
Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Source :
Advanced Functional Materials, Advanced Functional Materials, Wiley, 2019, 29 (33), pp.1903960. ⟨10.1002/adfm.201903960⟩
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

International audience; Assembly of 2D MXene sheets into a 3D macroscopic architecture is highly desirable to overcome the severe restacking problem of 2D MXene sheets and develop MXene‐based functional materials. However, unlike graphene, 3D MXene macroassembly directly from the individual 2D sheets is hard to achieve for the intrinsic property of MXene. Here a new gelation method is reported to prepare a 3D structured hydrogel from 2D MXene sheets that is assisted by graphene oxide and a suitable reductant. As a supercapacitor electrode, the hydrogel delivers a superb capacitance up to 370 F g−1 at 5 A g−1, and more promisingly, demonstrates an exceptionally high rate performance with the capacitance of 165 F g−1 even at 1000 A g−1. Moreover, using controllable drying processes, MXene hydrogels are transformed into different monoliths with structures ranging from a loosely organized porous aerogel to a dense solid. As a result, a 3D porous MXene aerogel shows excellent adsorption capacity to simultaneously remove various classes of organic liquids and heavy metal ions while the dense solid has excellent mechanical performance with a high Young's modulus and hardness.

Details

ISSN :
16163028 and 1616301X
Volume :
29
Database :
OpenAIRE
Journal :
Advanced Functional Materials
Accession number :
edsair.doi.dedup.....d3a4d5de01c447cb79b8a81e93b8927a