Back to Search
Start Over
Deep XMM-Newton observations of an x-ray weak broad absorption line quasar at z = 6.5
- Source :
- Astrophysical Journal Letters, 924(2):L25
- Publication Year :
- 2022
-
Abstract
- We report X-ray observations of the most distant known gravitationally lensed quasar, J0439+1634 at $z=6.52$, which is also a broad absorption line (BAL) quasar, using the XMM-Newton Observatory. With a 130 ks exposure, the quasar is significantly detected as a point source at the optical position with a total of 358$^{+19}_{-19}$ net counts using the EPIC instrument. By fitting a power-law plus Galactic absorption model to the observed spectra, we obtain a spectral slope of $\Gamma=1.45^{+0.10}_{-0.09}$. The derived optical-to-X-ray spectral slope $\alpha_{\rm{ox}}$ is $-2.07^{+0.01}_{-0.01}$, suggesting that the X-ray emission of J0439+1634 is weaker by a factor of 18 than the expectation based on its 2500 Angstrom luminosity and the average $\alpha_{\rm{ox}}$ vs. luminosity relationship. This is the first time that an X-ray weak BAL quasar at $z>6$ has been observed spectroscopically. Its X-ray weakness is consistent with the properties of BAL quasars at lower redshift. By fitting a model including an intrinsic absorption component, we obtain intrinsic column densities of $N_{\rm{H}}=2.8^{+0.7}_{-0.6}\times10^{23}\,\rm{cm}^{-2}$ and $N_{\rm{H}}= 4.3^{+1.8}_{-1.5}\times10^{23}\,\rm{cm}^{-2}$, assuming a fixed $\Gamma$ of 1.9 and a free $\Gamma$, respectively. The intrinsic rest-frame 2--10 keV luminosity is derived as $(9.4-15.1)\times10^{43}\,\rm{erg\,s}^{-1}$, after correcting for lensing magnification ($\mu=51.3$). The absorbed power-law model fitting indicates that J0439+1634 is the highest redshift obscured quasar with a direct measurement of the absorbing column density. The intrinsic high column density absorption can reduce the X-ray luminosity by a factor of $3-7$, which also indicates that this quasar could be a candidate of intrinsically X-ray weak quasar.<br />Comment: 8 pages, 3 figures, 1 table; Accepted for publication in ApJL
- Subjects :
- Space and Planetary Science
Astrophysics::High Energy Astrophysical Phenomena
Astrophysics of Galaxies (astro-ph.GA)
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics - Astrophysics of Galaxies
Astrophysics::Galaxy Astrophysics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Astrophysical Journal Letters, 924(2):L25
- Accession number :
- edsair.doi.dedup.....d3c74e4b4fdb1907c96c8c1e07adb037