Back to Search
Start Over
Using Global Biodiversity Information Facility Occurrence Data for Automated Invasive Alien Species Risk Mapping
- Source :
- Biodiversity Information Science and Standards 4: e59172
- Publication Year :
- 2020
- Publisher :
- Pensoft Publishers, 2020.
-
Abstract
- To support invasive alien species risk assessments, the Tracking Invasive Alien Species (TrIAS) project has developed an automated, open, workflow incorporating state-of-the-art species distribution modelling practices to create risk maps using the open source language R. It is based on Global Biodiversity Information Facility (GBIF) data and openly published environmental data layers characterizing climate and land cover. Our workflow requires only a species name and generates an ensemble of machine-learning algorithms (Random Forest, Boosted Regression Trees, K-Nearest Neighbors and AdaBoost) stacked together as a meta-model to produce the final risk map at 1 km2 resolution (Fig. 1). Risk maps are generated automatically for standard Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emission scenarios and are accompanied by maps illustrating the confidence of each individual prediction across space, thus enabling the intuitive visualization and understanding of how the confidence of the model varies across space and scenario (Fig. 2). The effects of sampling bias are accounted for by providing options to: use the sampling effort of the higher taxon the modelled species belongs to (e.g., vascular plants), and to thin species occurrences. use the sampling effort of the higher taxon the modelled species belongs to (e.g., vascular plants), and to thin species occurrences. The risk maps generated by our workflow are defensible and repeatable and provide forecasts of alien species distributions under further climate change scenarios. They can be used to support risk assessments and guide surveillance efforts on alien species in Europe. The detailied modeling framework and code are available on GitHub: https://github.com/trias-project.
Details
- ISSN :
- 25350897
- Volume :
- 4
- Database :
- OpenAIRE
- Journal :
- Biodiversity Information Science and Standards
- Accession number :
- edsair.doi.dedup.....d4241eae91fd8f507fa7ed988d937eb7