Back to Search Start Over

The structure of AcrIE4-F7 reveals a common strategy for dual CRISPR inhibition by targeting PAM recognition sites

Authors :
Sung-Hyun Hong
Gyujin Lee
Changkon Park
Jasung Koo
Eun-Hee Kim
Euiyoung Bae
Jeong-Yong Suh
Source :
Nucleic Acids Research. 50:2363-2376
Publication Year :
2022
Publisher :
Oxford University Press (OUP), 2022.

Abstract

Bacteria and archaea use the CRISPR-Cas system to fend off invasions of bacteriophages and foreign plasmids. In response, bacteriophages encode anti-CRISPR (Acr) proteins that potently inhibit host Cas proteins to suppress CRISPR-mediated immunity. AcrIE4-F7, which was isolated from Pseudomonas citronellolis, is a fused form of AcrIE4 and AcrIF7 that inhibits both type I-E and type I-F CRISPR-Cas systems. Here, we determined the structure of AcrIE4-F7 and identified its Cas target proteins. The N-terminal AcrIE4 domain adopts a novel α-helical fold that targets the PAM interaction site of the type I-E Cas8e subunit. The C-terminal AcrIF7 domain exhibits an αβ fold like native AcrIF7, which disables target DNA recognition by the PAM interaction site in the type I-F Cas8f subunit. The two Acr domains are connected by a flexible linker that allows prompt docking onto their cognate Cas8 targets. Conserved negative charges in each Acr domain are required for interaction with their Cas8 targets. Our results illustrate a common mechanism by which AcrIE4-F7 inhibits divergent CRISPR-Cas types.

Details

ISSN :
13624962 and 03051048
Volume :
50
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....d45c1831c9c4c80702eb804fdec14824