Back to Search Start Over

A Generic Framework for Black-box Explanations

Authors :
Clement Henin
Daniel Le Métayer
École des Ponts ParisTech (ENPC)
Privacy Models, Architectures and Tools for the Information Society (PRIVATICS)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Inria Lyon
Institut National de Recherche en Informatique et en Automatique (Inria)
CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Grenoble - Rhône-Alpes
Source :
FILA 2020-International Workshop on Fair and Interpretable Learning Algorithms, FILA 2020-International Workshop on Fair and Interpretable Learning Algorithms, Dec 2020, Atlanta, United States. pp.1-10, IEEE BigData
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

This is a pre-print of an article published in the International Workshop on Fair and Interpretable Learning Algorithms; International audience; Beyond their differences, most black-box explanation methods share a number of features and can be framed in a common structure. We identify these features and propose a generic and parameterized framework which makes it possible to combine them in different ways. This framework has been implemented in a proof of concept system called IBEX (for “Interactive Black-box EXplanation system”). IBEX makes it possible to address a variety of needs of different types of explainees (e.g. local or global explanations, detailed or simple explanations, explanations in the form of counterfactuals, rules, plots, etc.). We illustrate the benefit of the approach in terms of versatility through several case studies corresponding to different types of explainees.

Details

Language :
English
Database :
OpenAIRE
Journal :
FILA 2020-International Workshop on Fair and Interpretable Learning Algorithms, FILA 2020-International Workshop on Fair and Interpretable Learning Algorithms, Dec 2020, Atlanta, United States. pp.1-10, IEEE BigData
Accession number :
edsair.doi.dedup.....d4cd9fdd1d6a2edcd1b7ef6a32f63fcf