Back to Search
Start Over
FP7 Project LONGLIFE: Overview of results and implications
- Source :
- Nuclear Engineering and Design 278(2014), 753-757
- Publication Year :
- 2014
- Publisher :
- Elsevier BV, 2014.
-
Abstract
- LONGLIFE (“Treatment of long term irradiation embrittlement effects in RPV safety assessment”) was a collaborative project of the 7th Framework Programme of EURATOM under the umbrella of NULIFE/NUGENIA, aiming at an improved understanding of irradiation effects in reactor pressure vessel steels under conditions representative of long term operation. The LONGLIFE project was completed by the end of January 2014. The paper gives an overview of the main project results and their implications for future research, as discussed at the final project workshop. The microstructural database for neutron-irradiated RPV steels was extended considerably and existing gaps on mechanical property data were closed. Indications of late blooming effects (LBE) were found in some cases, but clear criteria for the occurrence/exclusion in terms of irradiation conditions and chemical composition have still to be developed. The commonly accepted trend, that low flux and low irradiation temperature promotes LBE, is supported. A significant flux effect on the size of defect clusters was observed in two high Cu weld materials, while the changes of mechanical properties are not affected by the neutron flux. The database requires completion in particular for low-Cu RPV steels. The shift of reference temperature T 0 over the thickness location of a VVER-440 welding seam does not follow the prediction Russian code, because of the strong variation of the intrinsic weld bead structure. Therefore, the effect of the initial microstructure and of the heterogeneity on the radiation behaviour has to be addressed in future works. Existing embrittlement trend curves models were applied to the LONGLIFE data base. None of the trend curves could predict the behaviour of the entirety of the LONGLIFE materials sufficiently. A guideline for monitoring radiation embrittlement during life extension periods was developed.
- Subjects :
- radiation induced defects
Weld bead
Nuclear and High Energy Physics
Mechanical property
Engineering
Reactor pressure vessel steel
business.industry
hardening
Mechanical Engineering
Mechanical engineering
Welding
flux effect
trend curves
law.invention
embrittlement
Nuclear Energy and Engineering
law
Neutron flux
General Materials Science
late blooming
Safety, Risk, Reliability and Quality
business
Waste Management and Disposal
Embrittlement
Reactor pressure vessel
Subjects
Details
- ISSN :
- 00295493
- Volume :
- 278
- Database :
- OpenAIRE
- Journal :
- Nuclear Engineering and Design
- Accession number :
- edsair.doi.dedup.....d4ceced406e0c128e7c7d8bcf43dae23
- Full Text :
- https://doi.org/10.1016/j.nucengdes.2014.09.003