Back to Search Start Over

The Gas-Phase Structure of Alanine

Authors :
Alberto Lesarri
José L. Alonso
Susana Blanco
Juan C. López
Source :
Journal of the American Chemical Society. 126:11675-11683
Publication Year :
2004
Publisher :
American Chemical Society (ACS), 2004.

Abstract

The jet-cooled rotational spectrum of neutral alanine has been studied using laser-ablation molecular-beam Fourier transform microwave spectroscopy (LA-MB-FTMW). The spectra of the two most stable forms were observed in the frequency range 6-18 GHz for the parent, (15)N alanine, three single (13)C species, and four single D species. The (14)N nuclear quadrupole coupling hyperfine structures have been resolved, and their comparison with those calculated theoretically confirms unambiguously the conformer assignments. The independent structures of both conformers have been determined experimentally for the first time using r(s) and r(0) procedures. In both cases, the amino acid backbone is nonplanar. For the most stable conformer I, the COOH group adopts a cis configuration and an asymmetric bifurcated hydrogen bond is formed between the amino group and carbonyl oxygen (r(N-H(a)...O=C) = 2.70(2) A and r(N-H(b)...O=C) = 2.88(2) A). For conformer IIa, the COOH group adopts a trans configuration and is stabilized by a O-H...N hydrogen bond (r(O-H...N) = 1.96(2) A). The relative conformer abundances in the supersonic expansion have also been investigated.

Details

ISSN :
15205126 and 00027863
Volume :
126
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....d50aceee655496a942ca02b6fd402fc5