Back to Search Start Over

Numerically trivial automorphisms of Enriques surfaces in characteristic $2$

Authors :
Gebhard Martin
Igor V. Dolgachev
Source :
J. Math. Soc. Japan 71, no. 4 (2019), 1181-1200
Publication Year :
2017

Abstract

An automorphism of an algebraic surface $S$ is called cohomologically (numerically) trivial if it acts identically on the second $l$-adic cohomology group (this group modulo torsion subgroup). Extending the results of S. Mukai and Y. Namikawa to arbitrary characteristic $p > 0$, we prove that the group of cohomologically trivial automorphisms $\rm{Aut}_{\rm{ct}}(S)$ of an Enriques surface $S$ is of order $\leq 2$ if $S$ is not supersingular. If $p = 2$ and $S$ is supersingular, we show that $\rm{Aut}_{\rm{ct}}(S)$ is a cyclic group of odd order $n\in \{1,2,3,5,7,11\}$ or the quaternion group $Q_8$ of order $8$ and we describe explicitly all the exceptional cases. If $K_S \neq 0$, we also prove that the group $\rm{Aut}_{\rm{nt}}(S)$ of numerically trivial automorphisms is a subgroup of a cyclic group of order $\leq 4$ unless $p = 2$, where $\rm{Aut}_{\rm{nt}}(S)$ is a subgroup of a $2$-elementary group of rank $\leq 2$.<br />Final version, 18 pages

Details

Language :
English
Database :
OpenAIRE
Journal :
J. Math. Soc. Japan 71, no. 4 (2019), 1181-1200
Accession number :
edsair.doi.dedup.....d5159cb9c1b221b200dbf7a6dd5e730b