Back to Search
Start Over
Numerically trivial automorphisms of Enriques surfaces in characteristic $2$
- Source :
- J. Math. Soc. Japan 71, no. 4 (2019), 1181-1200
- Publication Year :
- 2017
-
Abstract
- An automorphism of an algebraic surface $S$ is called cohomologically (numerically) trivial if it acts identically on the second $l$-adic cohomology group (this group modulo torsion subgroup). Extending the results of S. Mukai and Y. Namikawa to arbitrary characteristic $p > 0$, we prove that the group of cohomologically trivial automorphisms $\rm{Aut}_{\rm{ct}}(S)$ of an Enriques surface $S$ is of order $\leq 2$ if $S$ is not supersingular. If $p = 2$ and $S$ is supersingular, we show that $\rm{Aut}_{\rm{ct}}(S)$ is a cyclic group of odd order $n\in \{1,2,3,5,7,11\}$ or the quaternion group $Q_8$ of order $8$ and we describe explicitly all the exceptional cases. If $K_S \neq 0$, we also prove that the group $\rm{Aut}_{\rm{nt}}(S)$ of numerically trivial automorphisms is a subgroup of a cyclic group of order $\leq 4$ unless $p = 2$, where $\rm{Aut}_{\rm{nt}}(S)$ is a subgroup of a $2$-elementary group of rank $\leq 2$.<br />Final version, 18 pages
- Subjects :
- 14J50
Torsion subgroup
Group (mathematics)
General Mathematics
Enriques surface
Quaternion group
Order (ring theory)
Cyclic group
Automorphism
action of automorphisms on cohomology
Cohomology
Combinatorics
14J28, 14J50
Mathematics::Group Theory
Mathematics - Algebraic Geometry
FOS: Mathematics
Enriques surfaces
Algebraic Geometry (math.AG)
14J28
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- J. Math. Soc. Japan 71, no. 4 (2019), 1181-1200
- Accession number :
- edsair.doi.dedup.....d5159cb9c1b221b200dbf7a6dd5e730b