Back to Search Start Over

Inflammation-Associated Senescence Promotes Helicobacter pylori–Induced Atrophic GastritisSummary

Authors :
Yulong He
Jianbo Xu
Peng Shi
Xinde Ou
Wen Zhou
Shirong Cai
Jin Li
Yujie Yuan
Jianjun Peng
Taiqiang Su
Liangliang Lin
Qinbo Cai
Source :
Cellular and Molecular Gastroenterology and Hepatology, Vol 11, Iss 3, Pp 857-880 (2021), Cellular and Molecular Gastroenterology and Hepatology
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Background & Aims The association between cellular senescence and Helicobacter pylori–induced atrophic gastritis is not clear. Here, we explore the role of cellular senescence in H pylori–induced atrophic gastritis and the underlying mechanism. Methods C57BL/6J mice were infected with H pylori for biological and mechanistic studies in vivo. Gastric precancerous lesions from patients and mouse models were collected and analyzed using senescence-associated beta-galactosidase, Sudan Black B, and immunohistochemical staining to analyze senescent cells, signaling pathways, and H pylori infection. Chromatin immunoprecipitation, luciferase reporter assays, and other techniques were used to explore the underlying mechanism in vitro. Results Gastric mucosa atrophy was highly associated with cellular senescence. H pylori promoted gastric epithelial cell senescence in vitro and in vivo in a manner that depended on C-X-C motif chemokine receptor 2 (CXCR2) signaling. Interestingly, H pylori infection not only up-regulated the expression of CXCR2 ligands, C-X-C motif chemokine ligands 1 and 8, but also transcriptionally up-regulated the expression of CXCR2 via the nuclear factor-κB subunit 1 directly. In addition, CXCR2 formed a positive feedback loop with p53 to continually enhance senescence. Pharmaceutical inhibition of CXCR2 in an H pylori–infected mouse model attenuated mucosal senescence and atrophy, and delayed further precancerous lesion progression. Conclusions Our study showed a new mechanism of H pylori–induced atrophic gastritis through CXCR2-mediated cellular senescence. Inhibition of CXCR2 signaling is suggested as a potential preventive therapy for targeting H pylori–induced atrophic gastritis. GEO data set accession numbers: GSE47797 and GSE3556.<br />Graphical abstract

Details

Language :
English
Volume :
11
Issue :
3
Database :
OpenAIRE
Journal :
Cellular and Molecular Gastroenterology and Hepatology
Accession number :
edsair.doi.dedup.....d51feee4d86b3f3b985a29b089d53c44