Back to Search Start Over

SINGLE TREE DETECTION FROM AIRBORNE LASER SCANNING DATA USING A MARKED POINT PROCESS BASED METHOD

Authors :
J. Zhang
Gunho Sohn
Mathieu Brédif
Department of Earth and Space Science and Engineering [York University - Toronto] (ESSE)
York University [Toronto]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution (MATIS)
Laboratoire des Sciences et Technologies de l'Information Géographique (LaSTIG)
École nationale des sciences géographiques (ENSG)
Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)-École nationale des sciences géographiques (ENSG)
Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)
Source :
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol II-3/W1, Pp 41-46 (2013), ISPRS Workshop on {3D} Virtual City Modeling (VCM), ISPRS Workshop on Virtual City Modeling (VCM), May 2013, Regina, Canada. pp.41--46, ⟨10.5194/isprsannals-II-3-W1-41-2013⟩
Publication Year :
2013
Publisher :
Copernicus Publications, 2013.

Abstract

Tree detection and reconstruction is of great interest in large-scale city modelling. In this paper, we present a marked point process model to detect single trees from airborne laser scanning (ALS) data. We consider single trees in ALS recovered canopy height model (CHM) as a realization of point process of circles. Unlike traditional marked point process, we sample the model in a constraint configuration space by making use of image process techniques. A Gibbs energy is defined on the model, containing a data term which judge the fitness of the model with respect to the data, and prior term which incorporate the prior knowledge of object layouts. We search the optimal configuration through a steepest gradient descent algorithm. The presented hybrid framework was test on three forest plots and experiments show the effectiveness of the proposed method.

Details

Language :
English
ISSN :
21949050 and 21949042
Database :
OpenAIRE
Journal :
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Accession number :
edsair.doi.dedup.....d54506a7238af9c0c91d6263b910c518
Full Text :
https://doi.org/10.5194/isprsannals-II-3-W1-41-2013⟩