Back to Search Start Over

Characterization of Human GTPBP3, a GTP-Binding Protein Involved in Mitochondrial tRNA Modification

Authors :
Magda Villarroya
Juan M. Esteve
David Perez-Martinez
Silvia Prado
Carmen Aguado
Miguel A. Soriano
Lucía Yim
Victor M. Victor
Erwin Knecht
Asunción Montaner
M.-Eugenia Armengod
Elvira Cebolla
José I. Martínez-Ferrandis
Source :
MOLECULAR AND CELLULAR BIOLOGY, r-CIPF: Repositorio Institucional Producción Científica del Centro de Investigación Principe Felipe (CIPF), Centro de Investigación Principe Felipe (CIPF), r-CIPF. Repositorio Institucional Producción Científica del Centro de Investigación Principe Felipe (CIPF), instname
Publication Year :
2008
Publisher :
Informa UK Limited, 2008.

Abstract

Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.

Details

ISSN :
10985549 and 02707306
Volume :
28
Database :
OpenAIRE
Journal :
Molecular and Cellular Biology
Accession number :
edsair.doi.dedup.....d58ca893886c258414cb5989e9dbc809
Full Text :
https://doi.org/10.1128/mcb.00946-08