Back to Search Start Over

On the Integrability of Tonelli Hamiltonians

Authors :
Alfonso Sorrentino
Sorrentino, Alfonso
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Department of Pure Mathematics and Mathematical Statistics (DPMMS)
Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
ANR-07-BLAN-0361,KAMFAIBLE,Hamilton-Jacobi et théorie KAM faible : à l'interface des EDP, systèmes dynamiques lagrangiens et symboliques(2007)
Publication Year :
2011

Abstract

In this article we discuss a weaker version of Liouville's theorem on the integrability of Hamiltonian systems. We show that in the case of Tonelli Hamiltonians the involution hypothesis on the integrals of motion can be completely dropped and still interesting information on the dynamics of the system can be deduced. Moreover, we prove that on the n-dimensional torus this weaker condition implies classical integrability in the sense of Liouville. The main idea of the proof consists in relating the existence of independent integrals of motion of a Tonelli Hamiltonian to the size of its Mather and Aubry sets. As a byproduct we point out the existence of non-trivial common invariant sets for all Hamiltonians that Poisson-commute with a Tonelli one.<br />19 pages. Version accepted by Trans. Amer. Math. Soc

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....d59fe50c975f88c5defce3ac5f6fc8d9