Back to Search Start Over

Diffeomorphism Invariant Riemannian Framework for Ensemble Average Propagator Computing

Authors :
Jian Cheng
Tianzi Jiang
Rachid Deriche
Aurobrata Ghosh
Brain imaging (LIAMA)
Laboratoire Franco-Chinois d'Informatique, d'Automatique et de Mathématiques Appliquées (LIAMA)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Chinese Academy of Sciences [Changchun Branch] (CAS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institute of Automation - Chinese Academy of Sciences-Centre National de la Recherche Scientifique (CNRS)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Chinese Academy of Sciences [Changchun Branch] (CAS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institute of Automation - Chinese Academy of Sciences-Centre National de la Recherche Scientifique (CNRS)
Computational Imaging of the Central Nervous System (ATHENA)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
MICCAI-2011-14th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI-2011-14th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2011, Toronto, Canada, Scopus-Elsevier, Lecture Notes in Computer Science ISBN: 9783642236280, MICCAI (2)
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; Background: In Diffusion Tensor Imaging (DTI), Riemannian framework based on Information Geometry theory has been proposed for processing tensors on estimation, interpolation, smoothing, regularization, segmentation, statistical test and so on. Recently Riemannian framework has been generalized to Orientation Distribution Function (ODF) and it is applicable to any Probability Density Function (PDF) under orthonormal basis representation. Spherical Polar Fourier Imaging (SPFI) was proposed for ODF and Ensemble Average Propagator (EAP) estimation from arbitrary sampled signals without any assumption. Purpose: Tensors only can represent Gaussian EAP and ODF is the radial integration of EAP, while EAP has full information for diffusion process. To our knowledge, so far there is no work on how to process EAP data. In this paper, we present a Riemannian framework as a mathematical tool for such task. Method: We propose a state-of-the-art Riemannian framework for EAPs by representing the square root of EAP, called wavefunction based on quantum mechanics, with the Fourier dual Spherical Polar Fourier (dSPF) basis. In this framework, the exponential map, logarithmic map and geodesic have closed forms, and weighted Riemannian mean and median uniquely exist. We analyze theoretically the similarities and differences between Riemannian frameworks for EAPs and for ODFs and tensors. The Riemannian metric for EAPs is diffeomorphism invariant, which is the natural extension of the affine-invariant metric for tensors. We propose Log-Euclidean framework to fast process EAPs, and Geodesic Anisotropy (GA) to measure the anisotropy of EAPs. With this framework, many important data processing operations, such as interpolation, smoothing, atlas estimation, Principal Geodesic Analysis (PGA), can be performed on EAP data. Results and Conclusions: The proposed Riemannian framework was validated in synthetic data for interpolation, smoothing, PGA and in real data for GA and atlas estimation. Riemannian median is much robust for atlas estimation.

Details

Language :
English
ISBN :
978-3-642-23628-0
ISBNs :
9783642236280
Database :
OpenAIRE
Journal :
MICCAI-2011-14th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI-2011-14th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2011, Toronto, Canada, Scopus-Elsevier, Lecture Notes in Computer Science ISBN: 9783642236280, MICCAI (2)
Accession number :
edsair.doi.dedup.....d5c6a7860125d1333fcbd6d01229f304