Back to Search Start Over

Self-Organizing Hierarchical Particle Swarm Optimization of Correlation Filters for Object Recognition

Authors :
Muhammad Omer Bin Saeed
Saad Rehman
Mohammad S. Alam
Muhammad Abbas
Ali Hassan
Farhan Riaz
Rupert Young
Sara Tehsin
Source :
IEEE Access, Vol 5, Pp 24495-24502 (2017)
Publication Year :
2017
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2017.

Abstract

Advanced correlation filters are an effective tool for target detection within a particular class. Most correlation filters are derived from a complex filter equation leading to a closed form filter solution. The response of the correlation filter depends upon the selected values of the optimal trade-off (OT) parameters. In this paper, the OT parameters are optimized using particle swarm optimization with respect to two different cost functions. The optimization has been made generic and is applied to each target separately in order to achieve the best possible result for each scenario. The filters obtained using standard particle swarm optimization (PSO) and hierarchal particle swarm optimization (HPSO) algorithms have been compared for various test images with the filter solutions available in the literature. It has been shown that optimization improves the performance of the filters significantly.

Details

ISSN :
21693536
Volume :
5
Database :
OpenAIRE
Journal :
IEEE Access
Accession number :
edsair.doi.dedup.....d6094811a5c3305ce648674ca7a57d76