Back to Search Start Over

Privacy protection control for mobile apps users

Authors :
Sophie Cerf
Bogdan Robu
Nicolas Marchand
Sara Bouchenak
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
GIPSA - Modelling and Optimal Decision for Uncertain Systems [GIPSA-MODUS]
GIPSA - COntrol, PErception, Robots, navigation and Intelligent Computing [GIPSA-COPERNIC]
Institut National des Sciences Appliquées de Lyon [INSA Lyon]
Laboratoire d'InfoRmatique en Image et Systèmes d'information [LIRIS]
Distribution, Recherche d'Information et Mobilité [DRIM]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS)
GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Grenoble Alpes (UGA)
GIPSA - COntrol, PErception, Robots, navigation and Intelligent Computing (GIPSA-COPERNIC)
GIPSA Pôle Sciences des Données (GIPSA-PSD)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Distribution, Recherche d'Information et Mobilité (DRIM)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL)
Source :
Control Engineering Practice, Control Engineering Practice, 2023, 134 (May), pp.105456. ⟨10.1016/j.conengprac.2023.105456⟩
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

International audience; Predominant in today society, mobile apps are rising as promising application systems for automatic control. An app can be viewed as a plant, processing input signals (queries, phone data, etc.) and generating outputs (such as a service or an answer). Guaranteeing that the app complies with a desired behavior is a major safety challenge. This work focuses on privacy issues for geolocated mobile apps. Many applications use the location data to provide a service (e.g., navigation, fitness) or to improve it (e.g., weather forecast, social media). This gain in service utility comes at the cost of personal data sharing. Such threat to user privacy can be leveraged by protection mechanisms, e.g., addition of noise to the location data. However, state-of-the-art techniques still lack means of ensuring both data utility and privacy in a dynamics utilization context. This paper presents the first non-linear analytical modeling followed by a control formulation for regulating the privacy level in a mobile app. The privacy is sensed using the well established notion of Point of Interest. Through modeling, we highlight the control challenges, namely the non-linearity and time-variance of the plant, its high sensibility to noise and the impact of the user's mobility pattern-seen a disturbance. A controller is designed, combining feedback with anticipation action. Evaluation is performed using mobility records from two real-world multi-users datasets. Our approach enables, with a unique and universal tuning, to robustly meet privacy objectives with preserved utility and negligible computational overhead. Control algorithm, experimental evaluation and analysis scripts are available online for reproducibility.

Details

Language :
English
ISSN :
09670661
Database :
OpenAIRE
Journal :
Control Engineering Practice, Control Engineering Practice, 2023, 134 (May), pp.105456. ⟨10.1016/j.conengprac.2023.105456⟩
Accession number :
edsair.doi.dedup.....d6898b2985f2ecb5db5b43c19edc6a58